Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 210(3): 815-26, 2016 May.
Article in English | MEDLINE | ID: mdl-26765311

ABSTRACT

Although fine roots are important components of the global carbon cycle, there is limited understanding of root structure-function relationships among species. We determined whether root respiration rate and decomposability, two key processes driving carbon cycling but always studied separately, varied with root morphological and chemical traits, in a coordinated way that would demonstrate the existence of a root economics spectrum (RES). Twelve traits were measured on fine roots (diameter ≤ 2 mm) of 74 species (31 graminoids and 43 herbaceous and dwarf shrub eudicots) collected in three biomes. The findings of this study support the existence of a RES representing an axis of trait variation in which root respiration was positively correlated to nitrogen concentration and specific root length and negatively correlated to the root dry matter content, lignin : nitrogen ratio and the remaining mass after decomposition. This pattern of traits was highly consistent within graminoids but less consistent within eudicots, as a result of an uncoupling between decomposability and morphology, and of heterogeneity of individual roots of eudicots within the fine-root pool. The positive relationship found between root respiration and decomposability is essential for a better understanding of vegetation-soil feedbacks and for improving terrestrial biosphere models predicting the consequences of plant community changes for carbon cycling.


Subject(s)
Carbon/metabolism , Plant Roots/anatomy & histology , Plant Roots/physiology , Cell Respiration , Linear Models , Principal Component Analysis , Species Specificity
2.
Ann Bot ; 109(2): 463-72, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22143881

ABSTRACT

BACKGROUND AND AIMS: Fine root decomposition is an important determinant of nutrient and carbon cycling in grasslands; however, little is known about the factors controlling root decomposition among species. Our aim was to investigate whether interspecific variation in the potential decomposition rate of fine roots could be accounted for by root chemical and morphological traits, life history and taxonomic affiliation. We also investigated the co-ordinated variation in root and leaf traits and potential decomposition rates. METHODS: We analysed potential decomposition rates and the chemical and morphological traits of fine roots on 18 Mediterranean herbaceous species grown in controlled conditions. The results were compared with those obtained for leaves in a previous study conducted on similar species. KEY RESULTS: Differences in the potential decomposition rates of fine roots between species were accounted for by root chemical composition, but not by morphological traits. The root potential decomposition rate varied with taxonomy, but not with life history. Poaceae, with high cellulose concentration and low concentrations of soluble compounds and phosphorus, decomposed more slowly than Asteraceae and Fabaceae. Patterns of root traits, including decomposition rate, mirrored those of leaf traits, resulting in a similar species clustering. CONCLUSIONS: The highly co-ordinated variation of roots and leaves in terms of traits and potential decomposition rate suggests that changes in the functional composition of communities in response to anthropogenic changes will strongly affect biogeochemical cycles at the ecosystem level.


Subject(s)
Poaceae/metabolism , Soil/chemistry , France , Mediterranean Region , Nitrogen/analysis , Phosphorus/analysis , Phosphorus/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Poaceae/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...