Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 50(29): 6488-97, 2011 Jul 26.
Article in English | MEDLINE | ID: mdl-21678921

ABSTRACT

SET and MYND domain-containing protein 2 (SMYD2) is a protein lysine methyltransferase that catalyzes the transfer of methyl groups from S-adenosylmethionine (AdoMet) to acceptor lysine residues on histones and other proteins. To understand the kinetic mechanism and the function of individual domains, human SMYD2 was overexpressed, purified, and characterized. Substrate specificity and product analysis studies established SMYD2 as a monomethyltransferase that prefers nonmethylated p53 peptide substrate. Steady-state kinetic and product inhibition studies showed that SMYD2 operates via a rapid equilibrium random Bi Bi mechanism at a rate of 0.048 ± 0.001 s(-1), with K(M)s for AdoMet and the p53 peptide of 0.031 ± 0.01 µM and 0.68 ± 0.22 µM, respectively. Metal analyses revealed that SMYD2 contains three tightly bound zinc ions that are important for maintaining the structural integrity and catalytic activity of SMYD2. Catalytic activity was also shown to be dependent on the GxG motif in the S-sequence of the split SET domain, as a G18A/G20A double mutant and a sequence deletion within the conserved motif impaired AdoMet binding and significantly decreased enzymatic activity. The functional importance of other SMYD2 domains including the MYND domain, the cysteine-rich post-SET domain, and the C-terminal domain (CTD), were also investigated. Taken together, these results demonstrated the functional importance of distinct domains in the SMYD family of proteins and further advanced our understanding of the catalytic mechanism of this family.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Amino Acid Motifs , Biocatalysis , Conserved Sequence , Crystallography, X-Ray , Histone-Lysine N-Methyltransferase/chemistry , Humans , Hydrogen-Ion Concentration , Kinetics , Methylation , Models, Molecular , Peptides/metabolism , Protein Structure, Tertiary , Substrate Specificity , Tumor Suppressor Protein p53/metabolism , Zinc/metabolism
2.
Protein Expr Purif ; 26(3): 386-93, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12460762

ABSTRACT

Tissue factor (TF), or thromboplastin, is a cell membrane-associated glycoprotein composed, in full length, of cytoplasmic, transmembrane, and extracellular domains. It functions as a cofactor in a complex with factor VII (FVII), generating activated factor VII (FVIIa) and initiating blood coagulation. The prothrombin time (PT) assay uses TF as the in vitro activator of coagulation under defined conditions, and it is primarily used to diagnose and manage the extrinsic-pathway factor defficiencies. To overcome the limitations of natural-source TF, we have expressed the mature full-length recombinant rabbit TF (rRTF) protein in Pichia pastoris. Isolation, by purification by immobilized metal-affinity chromatography, of full-length rRTF was facilitated by engineering a (His)(6) tail on its C-terminus, which maximizes the selection of rRTF with intact transmembrane and cytoplasmic domains, critical for proper activity. A PT reagent that incorporates this purified rRTF has performance characteristics similar to those of PT reagents made with natural TF as indicated in method comparison studies, and shows lot-to-lot consistency and reproducibility.


Subject(s)
Pichia/genetics , Prothrombin Time , Recombinant Proteins/metabolism , Thromboplastin/metabolism , Animals , Cloning, Molecular , DNA, Complementary , Factor VII/metabolism , Factor VIIa/metabolism , Gene Expression , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Reproducibility of Results , Thromboplastin/genetics , Thromboplastin/isolation & purification
3.
Protein Expr Purif ; 26(3): 406-15, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12460764

ABSTRACT

Protein C activators are proteases that activate protein C in the mammalian coagulation system. A reptilian protein C activator is a critical component in current functional assays for protein C, its cofactor protein S, as well as for the overall status of the protein C pathway. We have constructed a synthetic gene for a protein C activator, based on a published snake-venom polypeptide sequence. This recombinant protein C activator was expressed in Pichia pastoris as a secreted glycoprotein (ILPCA) using the AOX1 promoter and the alpha-factor signal sequence. A fermentation protocol was developed that produced about 150 mg/L biologically active ILPCA secreted in the fermented broth. A two-step purification scheme was devised to purify ILPCA to approximately 80% purity. The ILPCA produced has an apparent molecular weight of approximately 68 kDa and a deglycosilated molecular weight of 28 kDa. Steady-state kinetic analysis reveals that ILPCA activates purified human protein C with a K(m) of 77 nM and a k(cat) of 0.39 s(-1). In conclusion, ILPCA is a recombinant protein that can be produced reliably and in large quantities under controlled manufacturing conditions, activates protein C, and can be used in coagulation assays as an alternative to native venom preparations.


Subject(s)
Oligopeptides/biosynthesis , Oligopeptides/metabolism , Pichia/genetics , Protein C/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Animals , Base Sequence , Fermentation , Genetic Engineering , Humans , Kinetics , Molecular Sequence Data , Oligopeptides/genetics , Promoter Regions, Genetic/genetics , Recombinant Proteins/genetics , Snake Venoms/chemistry
4.
J Biol Chem ; 277(35): 31499-505, 2002 Aug 30.
Article in English | MEDLINE | ID: mdl-12072428

ABSTRACT

Cerebral deposition of amyloid beta-protein (A beta) is believed to play a key role in the pathogenesis of Alzheimer's disease. Because A beta is produced from the processing of amyloid beta-protein precursor (APP) by beta- and gamma-secretases, these enzymes are considered important therapeutic targets for identification of drugs to treat Alzheimer's disease. Unlike beta-secretase, which is a monomeric aspartyl protease, gamma-secretase activity resides as part of a membrane-bound, high molecular weight, macromolecular complex. Pepstatin and L685458 are among several structural classes of gamma-secretase inhibitors identified so far. These compounds possess a hydroxyethylene dipeptide isostere of aspartyl protease transition state analogs, suggesting gamma-secretase may be an aspartyl protease. However, the mechanism of inhibition of gamma-secretase by pepstatin and L685458 has not been elucidated. In this study, we report that pepstatin A methylester and L685458 unexpectedly displayed linear non-competitive inhibition of gamma-secretase. Sulfonamides and benzodiazepines, which do not resemble transition state analogs of aspartyl proteases, also displayed potent, non-competitive inhibition of gamma-secretase. Models to rationalize how transition state analogs inhibit their targets by non-competitive inhibition are discussed.


Subject(s)
Benzodiazepines/pharmacology , Carbamates/pharmacology , Dipeptides/pharmacology , Endopeptidases/metabolism , Pepstatins/pharmacology , Protease Inhibitors/pharmacology , Sulfonamides/pharmacology , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Binding Sites , Humans , Kinetics , Models, Molecular , Recombinant Proteins/antagonists & inhibitors
5.
Dev Growth Differ ; 34(1): 91-98, 1992 Feb.
Article in English | MEDLINE | ID: mdl-37281754

ABSTRACT

The formation of the fertilization layer in the Xenopus laevis egg fertilization envelope involves a lectin-ligand interaction and establishes a block to polyspermy in the extracellular matrix of the egg. The cortical granule lectin participating in the formation of the fertilization layer has been isolated but its ligand has not. We identified three jelly coat ligands bound by the cortical granule lectin using immunoelectrophoretic analyses. Two antigens were detected with anti-jelly serum and a third was identified using anti-envelope serum. All three antigenic ligands were associated with the innermost jelly coat layer, J1 , and two of the three antigenic ligands contained sulfate. One or more of these jelly coat ligands may function in establishing a block to polyspermy at fertilization in Xenopus laevis.

6.
Rouxs Arch Dev Biol ; 196(6): 339-346, 1987 Sep.
Article in English | MEDLINE | ID: mdl-28305633

ABSTRACT

Unevaginated and evaginated Drosophila imaginal discs were surface-labeled with 125I. Relative labeling was greater in eleven peptides and lower in three peptides of evaginated discs compared to unevaginated discs. These results are compared to the effects of 20-hydroxyecdysone (20-HOE) on metabolic labeling of membrane proteins fractionated from imaginal discs, and on cell surface labeling of a hormone-responsive Drosophila tissue culture line. A group of 35S-methionine labeled membrane fraction peptides whose metabolic labeling is 20-HOE dependent have isoelectric points and apparent molecular weights very similar to those of a group of proteins only labeled in iodinated evaginated discs, supporting the conclusion that these are hormone-dependent, cell surface proteins (Rickoll and Fristrom 1983). Based upon two-dimensional gel electrophoretic and immunological criteria three of the proteins showing increased labeling in evaginated discs are related to three proteins induced by 20-HOE in tissue culture cells. Two different subsets of radiolabeled peptides were observed in the imaginal discs based upon detergent solubility. Some of the proteins which are soluble in NP-40 plus urea but insoluble in NP-40 alone may be localized in the basal lamina of the imaginal discs, a structure which labels heavily with 125I and is lacking in tissue culture cells. In discs, the majority of hormone-dependent changes in radiolabeled peptides were seen in the fraction solubilized by NP-40 and urea with a sulfhydryl reducing agent, while in tissue culture cells, the majority of differences is seen in the fraction solubilized by NP-40 only. We speculate that these proteins may be involved in similar processes, e.g., cell rearrangement, that occur during both disc morphogenesis and 20-HOE induced aggregation in tissue culture cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...