Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Therm Biol ; 112: 103435, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36796892

ABSTRACT

The Climate Variability Hypothesis (CVH) predicts that ectotherms from thermally variable climates should have wider thermal tolerances than their counterparts living in stable climates. Although the CVH has been widely supported, the mechanisms underlying wider tolerance traits remain unclear. We test the CVH along with three mechanistic hypotheses that may explain how differences in tolerance limits arise: 1) Short-term Acclimation Hypothesis (mechanism: rapid, reversible plasticity), 2) Long-term Effects Hypothesis (mechanisms: developmental plasticity, epigenetics, maternal effects, or adaptation), and 3) Trade-off Hypothesis (mechanism: trade-off between short- and long-term responses). We tested these hypotheses by measuring CTMIN, CTMAX, and thermal breadths (CTMAX - CTMIN) of aquatic mayfly and stonefly nymphs from adjacent streams with distinctly different levels of thermal variation following acclimation to either cool, control, and warm conditions. In one stream, daily mean temperature varied by about 5 °C annually, whereas in the other, it varied by more than 25 °C. In support of the CVH, we found that mayfly and stonefly nymphs from the thermally variable stream had broader thermal tolerances than those from the thermally stable stream. However, support for the mechanistic hypotheses differed by species. Mayflies appear to rely on long-term strategies for maintaining broader thermal limits, whereas stoneflies achieve broader thermal limits via short-term plasticity. We found no support for the Trade-off Hypothesis.


Subject(s)
Ephemeroptera , Insecta , Animals , Climate , Temperature , Acclimatization , Nymph
2.
J Exp Biol ; 226(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36633213

ABSTRACT

For insects, life in water is challenging because oxygen supply is typically low compared with in air. Oxygen limitation may occur when oxygen levels or water flows are low or when warm temperatures stimulate metabolic demand for oxygen. A potential mechanism for mitigating oxygen shortages is behavior - moving to cooler, more oxygenated or faster flowing microhabitats. Whether stream insects can make meaningful choices, however, depends on: (i) how temperature, oxygen and flow vary at microspatial scales and (ii) the ability of insects to sense and exploit that variation. To assess the extent of microspatial variation in conditions, we measured temperature, oxygen saturation and flow velocity within riffles of two streams in Montana, USA. In the lab, we then examined preferences of nymphs of the stonefly Pteronarcys californica to experimental gradients based on field-measured values. Temperature and oxygen level varied only slightly within stream riffles. By contrast, flow velocity was highly heterogeneous, often varying by more than 125 cm s-1 within riffles and 44 cm s-1 around individual cobbles. Exploiting micro-variation in flow may thus be the most reliable option for altering rates of oxygen transport. In support of this prediction, P. californica showed little ability to exploit gradients in temperature and oxygen but readily exploited micro-variation in flow - consistently choosing higher flows when conditions were warm or hypoxic. These behaviors may help stream insects mitigate low-oxygen stress from climate change and other anthropogenic disturbances.


Subject(s)
Insecta , Orthoptera , Animals , Insecta/metabolism , Oxygen/metabolism , Climate Change , Water
3.
Biol Lett ; 17(5): 20210004, 2021 05.
Article in English | MEDLINE | ID: mdl-33975487

ABSTRACT

Recent experiments support the idea that upper thermal limits of aquatic insects arise, at least in part, from a lack of sufficient oxygen: rising temperatures typically stimulate metabolic demand for oxygen more than they increase rates of oxygen supply from the environment. Consequently, factors influencing oxygen supply, like water flow, should also affect thermal and hypoxia tolerance. We tested this hypothesis by measuring the effects of experimentally manipulated flows on the heat and hypoxia tolerance of aquatic nymphs of the giant salmonfly (Plecoptera: Pteronarcys californica), a common stonefly in western North America. As predicted, stoneflies in flowing water (10 cm s-1) tolerated water that was approximately 4°C warmer and that contained approximately 15% less oxygen than did those in standing water. Our results imply that the impacts of climate change on streamflow, such as changes in patterns of precipitation and decreased snowpack, will magnify the threats to aquatic insects from warmer water temperatures and lower oxygen levels.


Subject(s)
Hot Temperature , Insecta , Animals , Hypoxia , North America , Oxygen , Oxygen Consumption
4.
Glob Chang Biol ; 26(12): 6667-6684, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32931053

ABSTRACT

Climate change is altering conditions in high-elevation streams worldwide, with largely unknown effects on resident communities of aquatic insects. Here, we review the challenges of climate change for high-elevation aquatic insects and how they may respond, focusing on current gaps in knowledge. Understanding current effects and predicting future impacts will depend on progress in three areas. First, we need better descriptions of the multivariate physical challenges and interactions among challenges in high-elevation streams, which include low but rising temperatures, low oxygen supply and increasing oxygen demand, high and rising exposure to ultraviolet radiation, low ionic strength, and variable but shifting flow regimes. These factors are often studied in isolation even though they covary in nature and interact in space and time. Second, we need a better mechanistic understanding of how physical conditions in streams drive the performance of individual insects. Environment-performance links are mediated by physiology and behavior, which are poorly known in high-elevation taxa. Third, we need to define the scope and importance of potential responses across levels of biological organization. Short-term responses are defined by the tolerances of individuals, their capacities to perform adequately across a range of conditions, and behaviors used to exploit local, fine-scale variation in abiotic factors. Longer term responses to climate change, however, may include individual plasticity and evolution of populations. Whether high-elevation aquatic insects can mitigate climatic risks via these pathways is largely unknown.


Subject(s)
Climate Change , Rivers , Animals , Extreme Environments , Humans , Insecta , Ultraviolet Rays
5.
Ecol Evol ; 9(10): 6052-6067, 2019 May.
Article in English | MEDLINE | ID: mdl-31161018

ABSTRACT

Recent increases in the frequency and size of desert wildfires bring into question the impacts of fire on desert invertebrate communities. Furthermore, consumer communities can strongly impact invertebrates through predation and top-down effects on plant community assembly. We experimentally applied burn and rodent exclusion treatments in a full factorial design at sites in both the Mojave and Great Basin deserts to examine the impact that fire and rodent consumers have on invertebrate communities. Pitfall traps were used to survey invertebrates from April through September 2016 to determine changes in abundance, richness, and diversity of invertebrate communities in response to fire and rodent treatments. Generally speaking, rodent exclusion had very little effect on invertebrate abundance or ant abundance, richness or diversity. The one exception was ant abundance, which was higher in rodent access plots than in rodent exclusion plots in June 2016, but only at the Great Basin site. Fire had little effect on the abundances of invertebrate groups at either desert site, with the exception of a negative effect on flying-forager abundance at our Great Basin site. However, fire reduced ant species richness and Shannon's diversity at both desert sites. Fire did appear to indirectly affect ant community composition by altering plant community composition. Structural equation models suggest that fire increased invasive plant cover, which negatively impacted ant species richness and Shannon's diversity, a pattern that was consistent at both desert sites. These results suggest that invertebrate communities demonstrate some resilience to fire and invasions but increasing fire and spread of invasive due to invasive grass fire cycles may put increasing pressure on the stability of invertebrate communities.

SELECTION OF CITATIONS
SEARCH DETAIL
...