Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cell Stem Cell ; 31(1): 39-51.e6, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181749

ABSTRACT

Research on human cerebellar development and disease has been hampered by the need for a human cell-based system that recapitulates the human cerebellum's cellular diversity and functional features. Here, we report a human organoid model (human cerebellar organoids [hCerOs]) capable of developing the complex cellular diversity of the fetal cerebellum, including a human-specific rhombic lip progenitor population that have never been generated in vitro prior to this study. 2-month-old hCerOs form distinct cytoarchitectural features, including laminar organized layering, and create functional connections between inhibitory and excitatory neurons that display coordinated network activity. Long-term culture of hCerOs allows healthy survival and maturation of Purkinje cells that display molecular and electrophysiological hallmarks of their in vivo counterparts, addressing a long-standing challenge in the field. This study therefore provides a physiologically relevant, all-human model system to elucidate the cell-type-specific mechanisms governing cerebellar development and disease.


Subject(s)
Cerebellum , Purkinje Cells , Humans , Infant , Metencephalon , Organoids
2.
Nat Neurosci ; 26(12): 2090-2103, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37946050

ABSTRACT

Genes involved in synaptic function are enriched among those with autism spectrum disorder (ASD)-associated rare genetic variants. Dysregulated cortical neurogenesis has been implicated as a convergent mechanism in ASD pathophysiology, yet it remains unknown how 'synaptic' ASD risk genes contribute to these phenotypes, which arise before synaptogenesis. Here, we show that the synaptic Ras GTPase-activating (RASGAP) protein 1 (SYNGAP1, a top ASD risk gene) is expressed within the apical domain of human radial glia cells (hRGCs). In a human cortical organoid model of SYNGAP1 haploinsufficiency, we find dysregulated cytoskeletal dynamics that impair the scaffolding and division plane of hRGCs, resulting in disrupted lamination and accelerated maturation of cortical projection neurons. Additionally, we confirmed an imbalance in the ratio of progenitors to neurons in a mouse model of Syngap1 haploinsufficiency. Thus, SYNGAP1-related brain disorders may arise through non-synaptic mechanisms, highlighting the need to study genes associated with neurodevelopmental disorders (NDDs) in diverse human cell types and developmental stages.


Subject(s)
Autism Spectrum Disorder , Neurodevelopmental Disorders , Animals , Mice , Humans , Autism Spectrum Disorder/genetics , ras GTPase-Activating Proteins/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Neurogenesis/genetics
3.
Biol Psychiatry ; 93(7): 606-615, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36759258

ABSTRACT

Brain organoids derived from human pluripotent stem cells are emerging as a powerful tool to model cellular aspects of neuropsychiatric disorders, including alterations in cell proliferation, differentiation, migration, and lineage trajectory. To date, most contributions in the field have focused on modeling cellular impairment of the cerebral cortex, with few studies probing dysfunction in local network connectivity. However, it is increasingly more apparent that these psychiatric disorders are connectopathies involving multiple brain structures and the connections between them. Therefore, the lack of reproducible anatomical features in these 3-dimensional cultures represents a major bottleneck for effectively modeling brain connectivity at the micro(cellular) level and at the macroscale level between brain regions. In this perspective, we review the use of current organoid protocols to model neuropsychiatric disorders with a specific emphasis on the potential and limitations of the current strategies to model impairments in functional connectivity. Finally, we discuss the importance of adopting interdisciplinary strategies to establish next-generation, multiregional organoids that can model, with higher fidelity, the dysfunction in the development and functionality of long-range connections within the brain of patients affected by psychiatric disorders.


Subject(s)
Induced Pluripotent Stem Cells , Mental Disorders , Humans , Brain , Organoids , Cell Differentiation
4.
Front Cell Dev Biol ; 10: 1023279, 2022.
Article in English | MEDLINE | ID: mdl-36313550

ABSTRACT

Human pluripotent stem cells (hPSCs) are intrinsically able to self-organize into cerebral organoids that mimic features of developing human brain tissue. These three-dimensional structures provide a unique opportunity to generate cytoarchitecture and cell-cell interactions reminiscent of human brain complexity in a dish. However, current in vitro brain organoid methodologies often result in intra-organoid variability, limiting their use in recapitulating later developmental stages as well as in disease modeling and drug discovery. In addition, cell stress and hypoxia resulting from long-term culture lead to incomplete maturation and cell death within the inner core. Here, we used a recombinant silk microfiber network as a scaffold to drive hPSCs to self-arrange into engineered cerebral organoids. Silk scaffolding promoted neuroectoderm formation and reduced heterogeneity of cellular organization within individual organoids. Bulk and single cell transcriptomics confirmed that silk cerebral organoids display more homogeneous and functionally mature neuronal properties than organoids grown in the absence of silk scaffold. Furthermore, oxygen sensing analysis showed that silk scaffolds create more favorable growth and differentiation conditions by facilitating the delivery of oxygen and nutrients. The silk scaffolding strategy appears to reduce intra-organoid variability and enhances self-organization into functionally mature human brain organoids.

5.
Development ; 149(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36305490

ABSTRACT

Significant efforts are ongoing to develop refined differentiation protocols to generate midbrain dopamine (DA) neurons from pluripotent stem cells for application in disease modeling, diagnostics, drug screening and cell-based therapies for Parkinson's disease. An increased understanding of the timing and molecular mechanisms that promote the generation of distinct subtypes of human midbrain DA during development will be essential for guiding future efforts to generate molecularly defined and subtype-specific DA neurons from pluripotent stem cells. Here, we use droplet-based single-cell RNA sequencing to transcriptionally profile the developing human ventral midbrain (VM) when the DA neurons are generated (6-11 weeks post-conception) and their subsequent differentiation into functional mature DA neurons in primary fetal 3D organoid-like cultures. This approach reveals that 3D cultures are superior to monolayer conditions for their ability to generate and maintain mature DA neurons; hence, they have the potential to be used for studying human VM development. These results provide a unique transcriptional profile of the developing human fetal VM and functionally mature human DA neurons that can be used to guide stem cell-based therapies and disease modeling approaches in Parkinson's disease.


Subject(s)
Parkinson Disease , Pluripotent Stem Cells , Humans , Parkinson Disease/genetics , Parkinson Disease/therapy , Dopaminergic Neurons , Mesencephalon , Cell Differentiation/genetics
6.
Stem Cell Reports ; 17(10): 2203-2219, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36150382

ABSTRACT

We have developed an efficient approach to generate functional induced dopaminergic (DA) neurons from adult human dermal fibroblasts. When performing DA neuronal conversion of patient fibroblasts with idiopathic Parkinson's disease (PD), we could specifically detect disease-relevant pathology in these cells. We show that the patient-derived neurons maintain age-related properties of the donor and exhibit lower basal chaperone-mediated autophagy compared with healthy donors. Furthermore, stress-induced autophagy resulted in an age-dependent accumulation of macroautophagic structures. Finally, we show that these impairments in patient-derived DA neurons leads to an accumulation of phosphorylated alpha-synuclein, the classical hallmark of PD pathology. This pathological phenotype is absent in neurons generated from induced pluripotent stem cells from the same patients. Taken together, our results show that direct neural reprogramming can be used for obtaining patient-derived DA neurons, which uniquely function as a cellular model to study age-related pathology relevant to idiopathic PD.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Adult , Autophagy/physiology , Dopaminergic Neurons/pathology , Humans , Induced Pluripotent Stem Cells/pathology , Parkinson Disease/genetics , alpha-Synuclein/genetics
9.
Adv Sci (Weinh) ; 9(25): e2201392, 2022 09.
Article in English | MEDLINE | ID: mdl-35712780

ABSTRACT

Human in vitro models of neural tissue with tunable microenvironment and defined spatial arrangement are needed to facilitate studies of brain development and disease. Towards this end, embedded printing inside granular gels holds great promise as it allows precise patterning of extremely soft tissue constructs. However, granular printing support formulations are restricted to only a handful of materials. Therefore, there has been a need for novel materials that take advantage of versatile biomimicry of bulk hydrogels while providing high-fidelity support for embedded printing akin to granular gels. To address this need, Authors present a modular platform for bioengineering of neuronal networks via direct embedded 3D printing of human stem cells inside Self-Healing Annealable Particle-Extracellular matrix (SHAPE) composites. SHAPE composites consist of soft microgels immersed in viscous extracellular-matrix solution to enable precise and programmable patterning of human stem cells and consequent generation mature subtype-specific neurons that extend projections into the volume of the annealed support. The developed approach further allows multi-ink deposition, live spatial and temporal monitoring of oxygen levels, as well as creation of vascular-like channels. Due to its modularity and versatility, SHAPE biomanufacturing toolbox has potential to be used in applications beyond functional modeling of mechanically sensitive neural constructs.


Subject(s)
Microgels , Nerve Tissue , Humans , Hydrogels , Printing, Three-Dimensional , Tissue Scaffolds
10.
Nat Commun ; 12(1): 7302, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911939

ABSTRACT

Three-dimensional brain organoids have emerged as a valuable model system for studies of human brain development and pathology. Here we establish a midbrain organoid culture system to study the developmental trajectory from pluripotent stem cells to mature dopamine neurons. Using single cell RNA sequencing, we identify the presence of three molecularly distinct subtypes of human dopamine neurons with high similarity to those in developing and adult human midbrain. However, despite significant advancements in the field, the use of brain organoids can be limited by issues of reproducibility and incomplete maturation which was also observed in this study. We therefore designed bioengineered ventral midbrain organoids supported by recombinant spider-silk microfibers functionalized with full-length human laminin. We show that silk organoids reproduce key molecular aspects of dopamine neurogenesis and reduce inter-organoid variability in terms of cell type composition and dopamine neuron formation.


Subject(s)
Brain/growth & development , Brain/metabolism , Dopamine/metabolism , Neurons/metabolism , Organoids/growth & development , Brain/cytology , Humans , Neurogenesis , Neurons/cytology , Organoids/cytology , Organoids/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome
12.
Heliyon ; 7(1): e06006, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33532642

ABSTRACT

The focal and progressive degeneration of dopaminergic (DA) neurons in ventral midbrain has made Parkinson's disease (PD) a particularly interesting target of cell-based therapies. However, ethical issues and limited tissue availability have so far hindered the widespread use of human fetal tissue in cell-replacement therapy. DA neurons derived from human pluripotent stem cells (hPSCs) offer unprecedented opportunities to access a renewable source of cells suitable for PD therapeutic applications. To better understand the development and functional properties of stem-cell derived DA neurons, we generated targeted hPSC lines with the gene coding for Cre recombinase knocked into the TH locus. When combined with flexed GFP, they serve as reporter cell lines able to identify and isolate TH+ neurons in vitro and after transplantation in vivo. These TH-Cre lines provide a valuable genetic tool to manipulate DA neurons useful for the design of more precise DA differentiation protocols and the study of these cells after transplantation in pre-clinical animal models of PD.

13.
Cells ; 10(1)2021 01 12.
Article in English | MEDLINE | ID: mdl-33445654

ABSTRACT

Dopaminergic (DA) neurons derived from human pluripotent stem cells (hPSCs) represent a renewable and available source of cells useful for understanding development, developing disease models, and stem-cell therapies for Parkinson's disease (PD). To assess the utility of stem cell cultures as an in vitro model system of human DA neurogenesis, we performed high-throughput transcriptional profiling of ~20,000 ventral midbrain (VM)-patterned stem cells at different stages of maturation using droplet-based single-cell RNA sequencing (scRNAseq). Using this dataset, we defined the cellular composition of human VM cultures at different timepoints and found high purity DA progenitor formation at an early stage of differentiation. DA neurons sharing similar molecular identities to those found in authentic DA neurons derived from human fetal VM were the major cell type after two months in culture. We also developed a bioinformatic pipeline that provided a comprehensive long noncoding RNA landscape based on temporal and cell-type specificity, which may contribute to unraveling the intricate regulatory network of coding and noncoding genes in DA neuron differentiation. Our findings serve as a valuable resource to elucidate the molecular steps of development, maturation, and function of human DA neurons, and to identify novel candidate coding and noncoding genes driving specification of progenitors into functionally mature DA neurons.


Subject(s)
Cell Differentiation/genetics , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Gene Expression Profiling , Open Reading Frames/genetics , Single-Cell Analysis , Fibroblast Growth Factor 8/metabolism , Gene Expression Regulation , Genomics , Humans , Mesencephalon/cytology , Pluripotent Stem Cells/cytology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Seq
14.
Stem Cell Reports ; 15(4): 869-882, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32976765

ABSTRACT

Human glial progenitor cells (hGPCs) are promising cellular substrates to explore for the in situ production of new neurons for brain repair. Proof of concept for direct neuronal reprogramming of glial progenitors has been obtained in mouse models in vivo, but conversion using human cells has not yet been demonstrated. Such studies have been difficult to perform since hGPCs are born late during human fetal development, with limited accessibility for in vitro culture. In this study, we show proof of concept of hGPC conversion using fetal cells and also establish a renewable and reproducible stem cell-based hGPC system for direct neural conversion in vitro. Using this system, we have identified optimal combinations of fate determinants for the efficient dopaminergic (DA) conversion of hGPCs, thereby yielding a therapeutically relevant cell type that selectively degenerates in Parkinson's disease. The induced DA neurons show a progressive, subtype-specific phenotypic maturation and acquire functional electrophysiological properties indicative of DA phenotype.


Subject(s)
Cellular Reprogramming , Dopaminergic Neurons/cytology , Fetal Stem Cells/cytology , Mesencephalon/cytology , Neural Stem Cells/cytology , Neuroglia/cytology , Dopaminergic Neurons/metabolism , Fetal Stem Cells/metabolism , Hepatocyte Nuclear Factor 3-beta/metabolism , Humans , Models, Biological , Neural Stem Cells/metabolism , Neuroglia/metabolism , Neurons/cytology , Neurons/metabolism , Tyrosine 3-Monooxygenase/metabolism
15.
Adv Sci (Weinh) ; 7(16): 2001150, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32832365

ABSTRACT

Compartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high-aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open-well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system. Suitability of the method for multimaterial integration allows to tailor the device architecture for the long-term maintenance of healthy human stem-cell derived neurons and astrocytes, spanning at least 40 days. Leveraging fast-prototyping capabilities at both micro and macroscale, a proof-of-principle human in vitro model of the nigrostriatal pathway is created. By presenting a route for novel materials and unique architectures in microfluidic systems, the method provides new possibilities in biological research beyond neuroscience applications.

17.
Nat Commun ; 11(1): 2434, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415072

ABSTRACT

Cell replacement is a long-standing and realistic goal for the treatment of Parkinson's disease (PD). Cells for transplantation can be obtained from fetal brain tissue or from stem cells. However, after transplantation, dopamine (DA) neurons are seen to be a minor component of grafts, and it has remained difficult to determine the identity of other cell types. Here, we report analysis by single-cell RNA sequencing (scRNA-seq) combined with comprehensive histological analyses to characterize intracerebral grafts from human embryonic stem cells (hESCs) and fetal tissue after functional maturation in a pre-clinical rat PD model. We show that neurons and astrocytes are major components in both fetal and stem cell-derived grafts. Additionally, we identify a cell type closely resembling a class of recently identified perivascular-like cells in stem cell-derived grafts. Thus, this study uncovers previously unknown cellular diversity in a clinically relevant cell replacement PD model.


Subject(s)
Dopaminergic Neurons/cytology , Parkinson Disease/therapy , Stem Cell Transplantation , Stem Cells/cytology , Animals , Brain/metabolism , Cell Differentiation , Corpus Striatum , Disease Models, Animal , Dopamine/metabolism , Embryonic Stem Cells/cytology , Female , Graft Survival , Humans , Multigene Family , RNA-Seq , Rats , Rats, Nude , Regeneration , Single-Cell Analysis , Transcriptome
18.
FEBS Lett ; 593(23): 3370-3380, 2019 12.
Article in English | MEDLINE | ID: mdl-31535361

ABSTRACT

Direct neuronal reprogramming can be achieved using different approaches: by expressing neuronal transcription factors or microRNAs; and by knocking down neuronal repressive elements. However, there still exists a high variability in terms of the quality and maturity of the induced neurons obtained, depending on the reprogramming strategy employed. Here, we evaluate different long-term culture conditions and study the effect of expressing the neuronal-specific microRNAs, miR124 and miR9/9*, while reprogramming with forced expression of the transcription factors Ascl1, Brn2, and knockdown of the neuronal repressor REST. We show that the addition of microRNAs supports neuronal maturation in terms of gene and protein expression, as well as in terms of electrophysiological properties.


Subject(s)
Cellular Reprogramming/genetics , MicroRNAs/genetics , Neurogenesis/genetics , Neurons/metabolism , Repressor Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Computational Biology , Fibroblasts/metabolism , Gene Expression Regulation, Developmental/genetics , Gene Knockdown Techniques , Homeodomain Proteins/genetics , Humans , POU Domain Factors/genetics
19.
J Vis Exp ; (148)2019 06 17.
Article in English | MEDLINE | ID: mdl-31259901

ABSTRACT

Converting resident glia in the brain into functional and subtype-specific neurons in vivo provides a step forward towards the development of alternative cell replacement therapies while also creating tools to study cell fate in situ. To date, it has been possible to obtain neurons via in vivo reprogramming, but the precise phenotype of these neurons or how they mature has not been analyzed in detail. In this protocol, we describe a more efficient conversion and cell-specific identification of the in vivo reprogrammed neurons, using an AAV-based viral vector system. We also provide a protocol for functional assessment of the reprogrammed cells' neuronal maturation. By injecting flip-excision (FLEX) vectors, containing the reprogramming and synapsin-driven reporter genes to specific cell types in the brain that serve as the target for cell reprogramming. This technique allows for the easy identification of newly reprogrammed neurons. Results show that the obtained reprogrammed neurons functionally mature over time, receive synaptic contacts and show electrophysiological properties of different types of interneurons. Using the transcription factors Ascl1, Lmx1a and Nurr1, the majority of the reprogrammed cells have properties of fast-spiking, parvalbumin-containing interneurons.


Subject(s)
Cellular Reprogramming , Dependovirus/metabolism , Genetic Vectors/metabolism , Interneurons/cytology , Neuroglia/cytology , Animals , Cell Differentiation , Cell Line , HEK293 Cells , Humans , Injections, Intraventricular , Interneurons/metabolism , Mice , Neuroglia/metabolism , Parvalbumins/metabolism , Phenotype
20.
Cell Mol Life Sci ; 76(20): 3953-3967, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31250034

ABSTRACT

The brain tissue has only a limited capacity for generating new neurons. Therefore, to treat neurological diseases, there is a need of other cell sources for brain repair. Different sources of cells have been subject of intense research over the years, including cells from primary tissue, stem cell-derived cells and reprogrammed cells. As an alternative, direct reprogramming of resident brain cells into neurons is a recent approach that could provide an attractive method for treating brain injuries or diseases as it uses the patient's own cells for generating novel neurons inside the brain. In vivo reprogramming is still in its early stages but holds great promise as an option for cell therapy. To date, both inhibitory and excitatory neurons have been obtained via in vivo reprogramming, but the precise phenotype or functionality of these cells has not been analysed in detail in most of the studies. Recent data shows that in vivo reprogrammed neurons are able to functionally mature and integrate into the existing brain circuitry, and compose interneuron phenotypes that seem to correlate to their endogenous counterparts. Interneurons are of particular importance as they are essential in physiological brain function and when disturbed lead to several neurological disorders. In this review, we describe a comprehensive overview of the existing studies involving brain repair, including in vivo reprogramming, with a focus on interneurons, along with an overview on current efforts to generate interneurons for cell therapy for a number of neurological diseases.


Subject(s)
Brain Injuries/therapy , Cell- and Tissue-Based Therapy/methods , Induced Pluripotent Stem Cells/cytology , Interneurons/cytology , Neurodegenerative Diseases/therapy , Regeneration/physiology , Animals , Biomarkers/metabolism , Brain/cytology , Brain/metabolism , Brain Injuries/genetics , Brain Injuries/metabolism , Brain Injuries/pathology , Cell Transdifferentiation , Cellular Reprogramming , Fibroblasts/cytology , Fibroblasts/metabolism , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Injections, Intraventricular , Interneurons/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurogenesis/genetics , Stem Cell Transplantation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...