Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 20(Suppl 16): 502, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31787096

ABSTRACT

BACKGROUND: In recent years, deep learning methods have been applied to many natural language processing tasks to achieve state-of-the-art performance. However, in the biomedical domain, they have not out-performed supervised word sense disambiguation (WSD) methods based on support vector machines or random forests, possibly due to inherent similarities of medical word senses. RESULTS: In this paper, we propose two deep-learning-based models for supervised WSD: a model based on bi-directional long short-term memory (BiLSTM) network, and an attention model based on self-attention architecture. Our result shows that the BiLSTM neural network model with a suitable upper layer structure performs even better than the existing state-of-the-art models on the MSH WSD dataset, while our attention model was 3 or 4 times faster than our BiLSTM model with good accuracy. In addition, we trained "universal" models in order to disambiguate all ambiguous words together. That is, we concatenate the embedding of the target ambiguous word to the max-pooled vector in the universal models, acting as a "hint". The result shows that our universal BiLSTM neural network model yielded about 90 percent accuracy. CONCLUSION: Deep contextual models based on sequential information processing methods are able to capture the relative contextual information from pre-trained input word embeddings, in order to provide state-of-the-art results for supervised biomedical WSD tasks.


Subject(s)
Algorithms , Neural Networks, Computer , Vocabulary , Humans , Natural Language Processing , Support Vector Machine
2.
Stud Health Technol Inform ; 264: 273-277, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31437928

ABSTRACT

Predicting the risk of mortality for patients with acute myocardial infarction (AMI) using electronic health records (EHRs) data can help identify risky patients who might need more tailored care. In our previous work, we built computational models to predict one-year mortality of patients admitted to an intensive care unit (ICU) with AMI or post myocardial infarction syndrome. Our prior work only used the structured clinical data from MIMIC-III, a publicly available ICU clinical database. In this study, we enhanced our work by adding the word embedding features from free-text discharge summaries. Using a richer set of features resulted in significant improvement in the performance of our deep learning models. The average accuracy of our deep learning models was 92.89% and the average F-measure was 0.928. We further reported the impact of different combinations of features extracted from structured and/or unstructured data on the performance of the deep learning models.


Subject(s)
Myocardial Infarction , Databases, Factual , Electronic Health Records , Humans , Intensive Care Units
SELECTION OF CITATIONS
SEARCH DETAIL
...