Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(4)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38674588

ABSTRACT

The COVID-19 pandemic has sparked a surge in research on microbiology and virology, shedding light on overlooked aspects such as the infection of bacteria by RNA virions in the animal microbiome. Studies reveal a decrease in beneficial gut bacteria during COVID-19, indicating a significant interaction between SARS-CoV-2 and the human microbiome. However, determining the origins of the virus remains complex, with observed phenomena such as species jumps adding layers to the narrative. Prokaryotic cells play a crucial role in the disease's pathogenesis and transmission. Analyzing previous studies highlights intricate interactions from clinical manifestations to the use of the nitrogen isotope test. Drawing parallels with the history of the Poliovirus underscores the need to prioritize investigations into prokaryotic cells hosting RNA viruses.

2.
J Med Virol ; 96(3): e29507, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38504586

ABSTRACT

The bacteriophage behavior of SARS-CoV-2 during the acute and post-COVID-19 phases appears to be an important factor in the development of the disease. The early use of antibiotics seems to be crucial to inhibit disease progression-to prevent viral replication in the gut microbiome, and control toxicological production from the human microbiome. To study the impact of specific antibiotics on recovery from COVID-19 and long COVID (LC) taking into account: vaccination status, comorbidities, SARS-CoV-2 wave, time of initiation of antibiotic therapy and concomitant use of corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs). A total of 211 COVID-19 patients were included in the study: of which 59 were vaccinated with mRNA vaccines against SARS-CoV-2 while 152 were unvaccinated. Patients were enrolled in three waves: from September 2020 to October 2022, corresponding to the emergence of the pre-Delta, Delta, and Omicron variants of the SARS-CoV-2 virus. The three criteria for enrolling patients were: oropharyngeal swab positivity or fecal findings; moderate symptoms with antibiotic intake; and measurement of blood oxygen saturation during the period of illness. The use of antibiotic combinations, such as amoxicillin with clavulanic acid (875 + 125 mg tablets, every 12 h) plus rifaximin (400 mg tablets every 12 h), as first choice, as suggested from the previous data, or azithromycin (500 mg tablets every 24 h), plus rifaximin as above, allows healthcare professionals to focus on the gut microbiome and its implications in COVID-19 disease during patient care. The primary outcome measured in this study was the estimated average treatment effect, which quantified the difference in mean recovery between patients receiving antibiotics and those not receiving antibiotics at 3 and 9 days after the start of treatment. In the analysis, both vaccinated and unvaccinated groups had a median illness duration of 7 days (interquartile range [IQR] 6-9 days for each; recovery crude hazard ratio [HR] = 0.94, p = 0.700). The median illness duration for the pre-Delta and Delta waves was 8 days (IQR 7-10 days), while it was shorter, 6.5 days, for Omicron (IQR 6-8 days; recovery crude HR = 1.71, p < 0.001). These results were confirmed by multivariate analysis. Patients with comorbidities had a significantly longer disease duration: median 8 days (IQR 7-10 days) compared to 7 days (IQR 6-8 days) for those without comorbidities (crude HR = 0.75, p = 0.038), but this result was not confirmed in multivariate analysis as statistical significance was lost. Early initiation of antibiotic therapy resulted in a significantly shorter recovery time (crude HR = 4.74, p < 0.001). Concomitant use of NSAIDs did not reduce disease duration and in multivariate analysis prolonged the disease (p = 0.041). A subgroup of 42 patients receiving corticosteroids for a median of 3 days (IQR 3-6 days) had a longer recovery time (median 9 days, IQR 8-10 days) compared to others (median 7 days, IQR 6-8 days; crude HR = 0.542, p < 0.001), as confirmed also by the adjusted HR. In this study, a statistically significant reduction in recovery time was observed among patients who received early antibiotic treatment. Early initiation of antibiotics played a crucial role in maintaining higher levels of blood oxygen saturation. In addition, it is worth noting that a significant number of patients who received antibiotics in the first 3 days and for a duration of 7 days, during the acute phase did not develop LC.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Humans , Anti-Bacterial Agents/therapeutic use , COVID-19/prevention & control , Rifaximin , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , COVID-19 Vaccines , Retrospective Studies , Anti-Inflammatory Agents, Non-Steroidal , Adrenal Cortex Hormones
3.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835341

ABSTRACT

SARS-CoV-2, one of the human RNA viruses, is widely studied around the world. Significant efforts have been made to understand its molecular mechanisms of action and how it interacts with epithelial cells and the human microbiome since it has also been observed in gut microbiome bacteria. Many studies emphasize the importance of surface immunity and also that the mucosal system is critical in the interaction of the pathogen with the cells of the oral, nasal, pharyngeal, and intestinal epithelium. Recent studies have shown how bacteria in the human gut microbiome produce toxins capable of altering the classical mechanisms of interaction of viruses with surface cells. This paper presents a simple approach to highlight the initial behavior of a novel pathogen, SARS-CoV-2, on the human microbiome. The immunofluorescence microscopy technique can be combined with spectral counting performed at mass spectrometry of viral peptides in bacterial cultures, along with identification of the presence of D-amino acids within viral peptides in bacterial cultures and in patients' blood. This approach makes it possible to establish the possible expression or increase of viral RNA viruses in general and SARS-CoV-2, as discussed in this study, and to determine whether or not the microbiome is involved in the pathogenetic mechanisms of the viruses. This novel combined approach can provide information more rapidly, avoiding the biases of virological diagnosis and identifying whether a virus can interact with, bind to, and infect bacteria and epithelial cells. Understanding whether some viruses have bacteriophagic behavior allows vaccine therapies to be focused either toward certain toxins produced by bacteria in the microbiome or toward finding inert or symbiotic viral mutations with the human microbiome. This new knowledge opens a scenario on a possible future vaccine: the probiotics vaccine, engineered with the right resistance to viruses that attach to both the epithelium human surface and gut microbiome bacteria.


Subject(s)
Bacteriophages , COVID-19 , Viruses , Humans , SARS-CoV-2/genetics , RNA , Bacteriophages/genetics , Amino Acids , Proteomics , Viruses/genetics , Microscopy, Fluorescence
4.
Medicina (Kaunas) ; 58(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35630059

ABSTRACT

This short communication describes the reinfection after nearly 18 months of the same patient who was previously infected with coronavirus disease 2019 (COVID-19) and who showed multiple negative real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) results by nasal swabs for severe acute respiratory syndrome coronavirus (SARS-CoV-2) but positive results on a fecal sample. We previously noted how, in the presence of symptoms suggestive of pneumonia, visible on a chest computed tomography (CT) scan and confirmed by fecal molecular testing, it was possible to draw the diagnosis of SARS-CoV-2 infection. One year later, the same patient was again affected by SARS-CoV-2. This time, the first antigenic nasal swab showed readily positive results. However, the patient's clinical course appeared to be more attenuated, showing no signs of pulmonary involvement in the radiographic examinations performed. This case shows a novelty in the pulmonary radiological evaluation of new SARS-CoV-2 infection.


Subject(s)
COVID-19 , Reinfection , COVID-19/diagnosis , Feces , Humans , Nasopharynx , SARS-CoV-2
5.
Vaccines (Basel) ; 10(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35632464

ABSTRACT

SARS-CoV-2 has become one of the most studied viruses of the last century. It was assumed that the only possible host for these types of viruses was mammalian eukaryotic cells. Our recent studies show that microorganisms in the human gastrointestinal tract affect the severity of COVID-19 and for the first time provide indications that the virus might replicate in gut bacteria. In order to further support these findings, in the present work, cultures of bacteria from the human microbiome and SARS-CoV-2 were analyzed by electron and fluorescence microscopy. The images presented in this article, in association with the nitrogen (15N) isotope-labeled culture medium experiment, suggest that SARS-CoV-2 could also infect bacteria in the gut microbiota, indicating that SARS-CoV-2 could act as a bacteriophage. Our results add new knowledge to the understanding of the mechanisms of SARS-CoV-2 infection and fill gaps in the study of the interactions between SARS-CoV-2 and non-mammalian cells. These findings could be useful in suggesting specific new pharmacological solutions to support the vaccination campaign.

6.
Biomedicines ; 11(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36672595

ABSTRACT

It has been 3 years since the beginning of the SARS-CoV-2 outbreak, however it is as yet little known how to care for the acute COVID-19 and long COVID patients. COVID-19 clinical manifestations are of both pulmonary and extra-pulmonary types. Extra-pulmonary ones include extreme tiredness (fatigue), shortness of breath, muscle aches, hyposmia, dysgeusia, and other neurological manifestations. In other autoimmune diseases, such as Parkinson's disease (PD) or Alzheimer's Disease (AD), it is well known that role of acetylcholine is crucial in olfactory dysfunction. We have already observed the presence of toxin-like peptides in plasma, urine, and faecal samples from COVID-19 patients, which are very similar to molecules known to alter acetylcholine signaling. After observing the production of these peptides in bacterial cultures, we have performed additional proteomics analyses to better understand their behavior and reported the extended data from our latest in vitro experiment. It seems that the gut microbiome continues to produce toxin-like peptides also after the decrease of RNA SARS-CoV-2 viral load at molecular tests. These toxicological interactions between the gut/human microbiome bacteria and the virus suggest a new scenario in the study of the clinical symptoms in long COVID and also in acute COVID-19 patients. It is discussed that in the bacteriophage similar behavior, the presence of toxins produced by bacteria continuously after viral aggression can be blocked using an appropriate combination of certain drugs.

7.
Br Med Bull ; 130(1): 39-49, 2019 06 19.
Article in English | MEDLINE | ID: mdl-30811525

ABSTRACT

INTRODUCTION: The present systematic review investigates the biological and chemical mechanisms that affect the health and structure of tendons following the use of fluoroquinolones (FQs). SOURCES OF DATA: A total of 12 articles were included, organized, and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. AREAS OF AGREEMENT: Five mechanisms were identified: arrest of proliferation through a decreased activity of cyclin B, CDK-1, CHK-1, and increased PK-1; decrease tenocytes migration through decreased phosphorylation of FAK; decrease type I collagen metabolism through increased MMP-2; chelate effect on ions that influence epigenetics and several enzymes; fluoroquinolones-induced ROS (radical oxygen species) production in mitochondria. AREAS OF CONTROVERSY: There is no definite structure-damage relationship. The dose-effect relationship is unclear. GROWING POINTS: Knowing and defining the damage exerted by FQs plays a role in clinical practice, replacing FQs with other antibacterial drugs or using antioxidants to attenuate their pathological effects. AREAS TIMELY FOR DEVELOPING RESEARCH: Clinical and basic sciences studies for each FQs are necessary.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Tendinopathy/chemically induced , Anti-Bacterial Agents/adverse effects , Cyclin B , Dose-Response Relationship, Drug , Fluoroquinolones/adverse effects , Humans , Phosphorylation/drug effects , Reactive Oxygen Species , Tendinopathy/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...