Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928215

ABSTRACT

Citrate, which is obtained from oxaloacetate and acetyl-CoA by citrate synthase in mitochondria, plays a key role in both normal and cancer cell metabolism. In this work, we investigated the effect of 10 mM extracellular citrate supplementation on HepG2 cells. Gene expression reprogramming was evaluated by whole transcriptome analysis using gene set enrichment analysis (GSEA). The transcriptomic data were validated through analyzing changes in the mRNA levels of selected genes by qRT-PCR. Citrate-treated cells exhibited the statistically significant dysregulation of 3551 genes; 851 genes were upregulated and 822 genes were downregulated. GSEA identified 40 pathways affected by differentially expressed mRNAs. The most affected biological processes were related to lipid and RNA metabolism. Several genes of the cytochrome P450 family were upregulated in treated cells compared to controls, including the CYP3A5 gene, a tumor suppressor in hepatocellular carcinoma (HCC) that plays an important protective role in HCC metastasis. The citrate-induced dysregulation of cytochromes could both improve the effectiveness of chemotherapeutics used in combination and reduce the aggressiveness of tumors by diminishing cell migration and invasion.


Subject(s)
Cell Movement , Citric Acid , Gene Expression Regulation, Neoplastic , Humans , Cell Movement/drug effects , Cell Movement/genetics , Hep G2 Cells , Gene Expression Regulation, Neoplastic/drug effects , Citric Acid/pharmacology , Citric Acid/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Neoplasm Invasiveness , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Transcriptome , Gene Expression Profiling
2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256207

ABSTRACT

Up Regulation Gene seven (URG7) is the pseudogene 2 of the transporter ABCC6. The translated URG7 protein is localized with its single transmembrane α-helix in the endoplasmic reticulum (ER) membrane, orienting the N- and C-terminal regions in the lumen and cytoplasm, respectively, and it plays a crucial role in the folding of ER proteins. Previously, the C-terminal region of URG7 (PU, residues 75-99) has been shown to modify the aggregation state of α-synuclein in the lysate of HepG2 cells. PU analogs were synthesized, and their anti-aggregation potential was tested in vitro on α-synuclein obtained using recombinant DNA technology. Circular dichroism (CD), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and microscopic techniques were used to assess the sample's behavior. The results show that the peptides studied by themselves are prone to clathrate-like structure formation of variable stability. Aggregation of α-synuclein is accompanied by desolvation of its peptide chain and an increase in intermolecular ß-sheets. The PU analogs all interact with α-synuclein aggregates and those possessing the most stable clathrate-like structures have the highest disaggregating effect. These findings suggest that the C-terminal region of URG7 may have a role in interacting and modulating α-synuclein structures and could be used to generate interesting therapeutic candidates as disaggregators of α-synuclein.


Subject(s)
Multidrug Resistance-Associated Proteins , Peptides , alpha-Synuclein , alpha-Synuclein/genetics , Bridged-Ring Compounds , Endoplasmic Reticulum , Peptides/pharmacology , Pseudogenes , Humans , Hep G2 Cells , Multidrug Resistance-Associated Proteins/genetics
3.
Int J Mol Sci ; 24(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003580

ABSTRACT

There is growing evidence that various ATP-binding cassette (ABC) transporters contribute to the growth and development of tumors, but relatively little is known about how the ABC transporter family behaves in hepatocellular carcinoma (HCC), one of the most common cancers worldwide. Cellular model studies have shown that ABCC6, which belongs to the ABC subfamily C (ABCC), plays a role in the cytoskeleton rearrangement and migration of HepG2 hepatocarcinoma cells, thus highlighting its role in cancer biology. Deep knowledge on the molecular mechanisms underlying the observed results could provide therapeutic insights into the tumors in which ABCC6 is modulated. In this study, differential expression levels of mRNA transcripts between ABCC6-silenced HepG2 and control groups were measured, and subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Real-Time PCR and Western blot analyses confirmed bioinformatics; functional studies support the molecular mechanisms underlying the observed effects. The results provide valuable information on the dysregulation of fundamental cellular processes, such as the focal adhesion pathway, which allowed us to obtain detailed information on the active role that the down-regulation of ABCC6 could play in the biology of liver tumors, as it is involved not only in cell migration but also in cell adhesion and invasion.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Hep G2 Cells , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate
4.
Biol Res ; 56(1): 33, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37344914

ABSTRACT

BACKGROUND: Voltage-dependent anion selective channels (VDACs) are the most abundant mitochondrial outer membrane proteins, encoded in mammals by three genes, VDAC1, 2 and 3, mostly ubiquitously expressed. As 'mitochondrial gatekeepers', VDACs control organelle and cell metabolism and are involved in many diseases. Despite the presence of numerous VDAC pseudogenes in the human genome, their significance and possible role in VDAC protein expression has not yet been considered. RESULTS: We investigated the relevance of processed pseudogenes of human VDAC genes, both in physiological and in pathological contexts. Using high-throughput tools and querying many genomic and transcriptomic databases, we show that some VDAC pseudogenes are transcribed in specific tissues and pathological contexts. The obtained experimental data confirm an association of the VDAC1P8 pseudogene with acute myeloid leukemia (AML). CONCLUSIONS: Our in-silico comparative analysis between the VDAC1 gene and its VDAC1P8 pseudogene, together with experimental data produced in AML cellular models, indicate a specific over-expression of the VDAC1P8 pseudogene in AML, correlated with a downregulation of the parental VDAC1 gene.


Subject(s)
Leukemia, Myeloid, Acute , Pseudogenes , Voltage-Dependent Anion Channels , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mitochondria , Pseudogenes/genetics , Transcriptome , Voltage-Dependent Anion Channels/genetics , Voltage-Dependent Anion Channels/metabolism
5.
Int J Mol Sci ; 24(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36901980

ABSTRACT

Liver cancer is one of the most common causes of cancer death worldwide. In recent years, substantial progress has been made in the development of systemic therapies, but there is still the need for new drugs and technologies that can increase the survival and quality of life of patients. The present investigation reports the development of a liposomal formulation of a carbamate molecule, reported as ANP0903, previously tested as an inhibitor of HIV-1 protease and now evaluated for its ability to induce cytotoxicity in hepatocellular carcinoma cell lines. PEGylated liposomes were prepared and characterized. Small, oligolamellar vesicles were produced, as demonstrated by light scattering results and TEM images. The physical stability of the vesicles in biological fluids was demonstrated in vitro, alongside the stability during storage. An enhanced cellular uptake was verified in HepG2 cells treated with liposomal ANP0903, resulting in a greater cytotoxicity. Several biological assays were performed to elucidate the molecular mechanisms explaining the proapoptotic effect of ANP0903. Our results allow us to hypothesize that the cytotoxic action in tumor cells is probably due to the inhibition of the proteasome, resulting in an increase in the amount of ubiquitinated proteins within the cells, which in turn triggers activation of autophagy and apoptosis processes, resulting in cell death. The proposed liposomal formulation represents a promising approach to deliver a novel antitumor agent to cancer cells and enhance its activity.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Liposomes/pharmacology , Hep G2 Cells , Carbamates/pharmacology , Quality of Life , Antineoplastic Agents/pharmacology , Apoptosis , Polyethylene Glycols/pharmacology , Cell Line, Tumor
6.
Int J Mol Sci ; 25(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38203652

ABSTRACT

Up-regulated Gene clone 7 (URG7) is a protein localized in the endoplasmic reticulum (ER) and overexpressed in liver cells upon hepatitis B virus (HBV) infection. Its activity has been related to the attenuation of ER stress resulting from HBV infection, promoting protein folding and ubiquitination and reducing cell apoptosis overall. While the antiapoptotic activity of URG7 in HBV-infected cells may have negative implications, this effect could be exploited positively in the field of proteinopathies, such as neurodegenerative diseases. In this work, we aimed to verify the possible contribution of URG7 as a reliever of cellular proteostasis alterations in a neuronal in vitro system. Following tunicamycin-induced ER stress, URG7 was shown to modulate different markers of the unfolded protein response (UPR) in favor of cell survival, mitigating ER stress and activating autophagy. Furthermore, URG7 promoted ubiquitination, and determined a reduction in protein aggregation, calcium release from the ER and intracellular ROS content, confirming its pro-survival activity. Therefore, in light of the results reported in this work, we hypothesize that URG7 offers activity as an ER stress reliever in a neuronal in vitro model, and we paved the way for a new approach in the treatment of neurodegenerative diseases.


Subject(s)
Hepatitis B , Neuroblastoma , Neurodegenerative Diseases , Neuroprotective Agents , Humans , Neuroprotective Agents/pharmacology , Cell Line , Hepatitis B virus , Clone Cells
7.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430920

ABSTRACT

Epidemiological studies have postulated an inverse correlation between developing cancer and neurodegeneration. It is known that the secretome plays a vital role in cell-cell communication in health and disease; the microglia is the resident macrophage of the central nervous system which maintains neuronal integrity by adapting as the microenvironment changes. The present study aimed to identify, in a cell model, biomarkers that link neurodegenerative diseases to cancer or vice versa. Real-time PCR and western blot analysis were used to characterize the effects on gene and protein expression of human hepatoblastoma (HepG2) and human microglia (HMC-III) cells after exchanging part of their conditioned medium. Biomarkers of the endoplasmic reticulum, and mitophagy and inflammatory processes were evaluated. In both cell types, we observed the activation of cytoprotective mechanisms against any potential pro-oxidant or pro-inflammatory signals present in secretomes. In contrast, HepG2 but not HMC-III cells seem to trigger autophagic processes following treatment with conditioned medium of microglia, thus suggesting a cell-specific adaptive response.


Subject(s)
Cell Physiological Phenomena , Microglia , Humans , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Microglia/metabolism , Biomarkers/metabolism , Gene Expression
8.
Pathophysiology ; 29(2): 173-186, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35645325

ABSTRACT

The ATP-binding cassette sub-family C member 6 transporter (ABCC6) is mainly found in the basolateral plasma membrane of hepatic and kidney cells. In hepatocarcinoma HepG2 cells, ABCC6 was involved in cell migration. In the present study, we investigated the role of ABCC6 in colon cancer evaluating the effect of Quercetin and Probenecid, inhibitors of the ectonucleotidase NT5E and ABCC6, respectively, on migration rate of Caco2 and HT29 cell lines. Both drugs reduced cell migration analyzed by scratch test. Gene and protein expression were evaluated by quantitative reverse-transcription PCR (RT-qPCR) and Western blot, respectively. In Caco2 cells, in which ABCC6 is significantly expressed, the addition of ATP restored motility, suggesting the involvement of P2 receptors. Contrary to HT29 cells, where the expression of ABCC6 is negligible but remarkable to the level of NT5E, no effect of ATP addition was detected, suggesting a main role on their migration by the phosphatidylinositol 3'-kinase (PI3K)/Akt system. Therefore, in some colon cancers in which ABCC6 is overexpressed, it may have a primary role in controlling the extracellular purinergic system by feeding it with ATP, thus representing a potential target for a therapy aimed at mitigating invasiveness of those type of cancers.

9.
Cells ; 10(11)2021 11 06.
Article in English | MEDLINE | ID: mdl-34831275

ABSTRACT

Background: Several pre-clinical and clinical reports suggest that HIV-1 protease inhibitors, in addition to the antiretroviral properties, possess pleiotropic pharmacological effects including anticancer action. Therefore, we investigated the pro-apoptotic activity in tumor cells of two molecules, RDD-19 and RDD-142, which are hydroxyethylamine derivatives' precursors of darunavir and several HIV-1 protease inhibitors. Methods: Three hepatoma cell lines and one non-pathological cell line were treated with RDD-19 and RDD-142, and cell viability was assessed. The expression levels of several markers for ER stress, autophagy, cellular ubiquitination, and Akt activation were quantified in HepG2 cells treated with RDD-19 and RDD-142 to evaluate apoptotic and non-apoptotic cell death. Results: RDD-19 and RDD-142 showed a greater dose-dependent cytotoxicity towards the hepatic tumor cell line HepG2 compared to the non-pathological hepatic cell line IHH. Both molecules caused two types of cell death, a caspase-dependent apoptosis, which was ascertained by a series of biochemical and morphological assays, and a caspase-independent death that was characterized by the induction of ER stress and autophagy. The strong increase of ubiquitinated proteins inside the cells suggested that the target of these molecules could be the proteasome and in silico molecular docking analysis that was used to support the plausibility of this hypothesis. Furthermore, cells treated with the two compounds displayed decreased levels of p-AKT, which interferes with cell survival and proliferation. Conclusions: These findings demonstrate that two compounds, RDD-19 and RDD-142, have pleiotropic effects and that they may represent promising anticancer candidates.


Subject(s)
Carcinoma, Hepatocellular/pathology , Darunavir/pharmacology , HIV-1/drug effects , Liver Neoplasms/pathology , Protease Inhibitors/pharmacology , Proteasome Endopeptidase Complex/metabolism , Unfolded Protein Response , Apoptosis/drug effects , Autophagy/drug effects , Binding Sites , Cell Shape/drug effects , Cell Survival/drug effects , Hep G2 Cells , Humans , Molecular Docking Simulation , Protease Inhibitors/chemistry , Unfolded Protein Response/drug effects
10.
Int J Mol Sci ; 22(6)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799762

ABSTRACT

Pseudoxanthoma elasticum (PXE) is a complex autosomal recessive disease caused by mutations of ABCC6 transporter and characterized by ectopic mineralization of soft connective tissues. Compared to the other ABC transporters, very few studies are available to explain the structural components and working of a full ABCC6 transporter, which may provide some idea about its physiological role in humans. Some studies suggest that mutations of ABCC6 in the liver lead to a decrease in some circulating factor and indicate that PXE is a metabolic disease. It has been reported that ABCC6 mediates the efflux of ATP, which is hydrolyzed in PPi and AMP; in the extracellular milieu, PPi gives potent anti-mineralization effect, whereas AMP is hydrolyzed to Pi and adenosine which affects some cellular properties by modulating the purinergic pathway. Structural and functional studies have demonstrated that silencing or inhibition of ABCC6 with probenecid changed the expression of several genes and proteins such as NT5E and TNAP, as well as Lamin, and CDK1, which are involved in cell motility and cell cycle. Furthermore, a change in cytoskeleton rearrangement and decreased motility of HepG2 cells makes ABCC6 a potential target for anti-cancer therapy. Collectively, these findings suggested that ABCC6 transporter performs functions that modify both the external and internal compartments of the cells.


Subject(s)
Hepatocytes/metabolism , Multidrug Resistance-Associated Proteins/genetics , Mutation , Neoplasms/genetics , Pseudoxanthoma Elasticum/genetics , Animals , Antineoplastic Agents/therapeutic use , Drug Resistance/genetics , Hep G2 Cells , Humans , Multidrug Resistance-Associated Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Pseudoxanthoma Elasticum/metabolism
11.
Int J Mol Sci ; 22(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33918053

ABSTRACT

Quercetin is a member of the flavonoid group of compounds, which is abundantly present in various dietary sources. It has excellent antioxidant properties and anti-inflammatory activity and is very effective as an anti-cancer agent against various types of tumors, both in vivo and in vitro. Quercetin has been also reported to modulate the activity of some members of the multidrug-resistance transporters family, such as P-gp, ABCC1, ABCC2, and ABCG2, and the activity of ecto-5'-nucleotidase (NT5E/CD73), a key regulator in some tumor processes such as invasion, migration, and metastasis. In this study, we investigated the effect of Quercetin on ABCC6 expression in HepG2 cells. ABCC6 is a member of the superfamily of ATP-binding cassette (ABC) transporters, poorly involved in drug resistance, whose mutations cause pseudoxanthoma elasticum, an inherited disease characterized by ectopic calcification of soft connective tissues. Recently, it has been reported that ABCC6 contributes to cytoskeleton rearrangements and HepG2 cell motility through purinergic signaling. Gene and protein expression were evaluated by quantitative Reverse-Transcription PCR (RT-qPCR) and western blot, respectively. Actin cytoskeleton dynamics was evaluated by laser confocal microscopy using fluorophore-conjugated phalloidin. Cell motility was analyzed by an in vitro wound-healing migration assay. We propose that ABCC6 expression may be controlled by the AKT pathway as part of an adaptative response to oxidative stress, which can be mitigated by the use of Quercetin-like flavonoids.


Subject(s)
Ion Channel Gating/drug effects , Multidrug Resistance-Associated Proteins/metabolism , Quercetin/pharmacology , Actins/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation/drug effects , Hep G2 Cells , Humans , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , Protein Multimerization/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
12.
Front Mol Biosci ; 7: 593866, 2020.
Article in English | MEDLINE | ID: mdl-33282912

ABSTRACT

The first intermediate in the mitochondrial tricarboxylic acid (TCA) cycle is citrate, which is essential and acts as a metabolic regulator for glycolysis, TCA cycle, gluconeogenesis, and fatty acid synthesis. Within the cytosol, citrate is cleaved by ATP citrate lyase (ACLY) into oxaloacetate (OAA) and acetyl-CoA; OAA can be used for neoglucogenesis or in the TCA cycle, while acetyl-CoA is the precursor of some biosynthetic processes, including the synthesis of fatty acids. Accumulating evidence suggests that citrate is involved in numerous physiological and pathophysiological processes such as inflammation, insulin secretion, neurological disorders, and cancer. Considering the crucial role of citrate to supply the acetyl-CoA pool for fatty acid synthesis and histone acetylation in tumors, in this study we evaluated the effect of citrate added to the growth medium on lipid deposition and histone H4 acetylation in hepatoma cells (HepG2). At low concentration, citrate increased both histone H4 acetylation and lipid deposition; at high concentration, citrate inhibited both, thus suggesting a crucial role of acetyl-CoA availability, which prompted us to investigate the effect of citrate on ACLY. In HepG2 cells, the expression of ACLY is correlated with histone acetylation, which, in turn, depends on citrate concentration. A decrease in H4 acetylation was also observed when citrate was added at a high concentration to immortalized human hepatic cells, whereas ACLY expression was unaffected, indicating a lack of control by histone acetylation. Considering the strong demand for acetyl-CoA but not for OAA in tumor cells, the exogenous citrate would behave like a trojan horse that carries OAA inside the cells and reduces ACLY expression and cellular metabolism. In addition, this study confirmed the already reported dual role of citrate both as a promoter of cell proliferation (at lower concentrations) and as an anticancer agent (at higher concentrations), providing useful tips on the use of citrate for the treatment of tumors.

13.
Cells ; 9(6)2020 06 05.
Article in English | MEDLINE | ID: mdl-32517079

ABSTRACT

ABCC6, belonging to sub-family C of ATP-binding cassette transporter, is an ATP-dependent transporter mainly present in the basolateral plasma membrane of hepatic and kidney cells. Although the substrates transported are still uncertain, ABCC6 has been shown to promote ATP release. The extracellular ATP and its derivatives di- and mono-nucleotides and adenosine by acting on specific receptors activate the so-called purinergic pathway, which in turn controls relevant cellular functions such as cell immunity, inflammation, and cancer. Here, we analyzed the effect of Abcc6 knockdown and probenecid-induced ABCC6 inhibition on cell cycle, cytoskeleton, and motility of HepG2 cells. Gene and protein expression were evaluated by quantitative Reverse Transcription PCR (RT-qPCR) and western blot, respectively. Cellular cycle analysis was evaluated by flow cytometry. Actin cytoskeleton dynamics was evaluated by laser confocal microscopy using fluorophore-conjugated phalloidin. Cell motility was analyzed by in vitro wound-healing migration assay. Cell migration is reduced both in Abcc6 knockdown HepG2 cells and in probenecid treated HepG2 cells by interfering with the extracellular reserve of ATP. Therefore, ABCC6 could contribute to cytoskeleton rearrangements and cell motility through purinergic signaling. Altogether, our findings shed light on a new role of the ABCC6 transporter in HepG2 cells and suggest that its inhibitor/s could be considered potential anti-metastatic drugs.


Subject(s)
Cell Movement , Cytoskeleton/metabolism , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Purines/metabolism , Adenosine Triphosphate/metabolism , Cell Cycle/drug effects , Cytoskeleton/drug effects , Extracellular Space/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing/drug effects , Hep G2 Cells , Humans , Multidrug Resistance-Associated Proteins/metabolism , Probenecid/pharmacology
14.
Pharmaceutics ; 12(6)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549193

ABSTRACT

The purpose of this study was to improve the knowledge on Hura crepitans L., a plant belonging to the Euphorbiaceae family that, on the one hand, is known to be toxic, but on the other, is a source of polyphenols with health-promoting effects. Different green extraction methods were applied, varying solvent, temperature, and duration of extraction, which can influence the phytochemical profile and biological activity of plant extracts, and the extracts were fully characterized. Aqueous extracts exhibited a superior antioxidant activity, as indicated by different spectrophotometric tests, and were cytoprotective to HepG2 cells used as model cells. Liquid chromatography-mass spectrometry analyses were performed to identify the secondary metabolites involved in these effects and demonstrated that solvent, duration, and temperature indeed influenced the extraction of polyphenols. Furthermore, the most promising extract, in terms of antioxidant potential, was incorporated into liposomes with the aim of promoting cell interaction and enhancing the antioxidant activity.

15.
Antioxidants (Basel) ; 9(5)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429083

ABSTRACT

Overproduction of oxidants in the human body is responsible for oxidative stress, which is associated with several diseases. High intake of vegetables and fruits can reduce the risk of chronic diseases, as they are sources of bioactive compounds capable of contrasting the free radical effects involved in cancer, obesity, diabetes, and neurodegenerative and cardiovascular diseases. Capsicum annuum L. cv Senise is a sweet pepper that is grown in the Basilicata region (Italy). It is an important source of polyphenols, carotenoids, and capsinoids and can play a key role in human health. In this study, an ethanol extract was obtained from C. annuum dried peppers and the analysis of the phytochemical composition was performed by LC-ESI/LTQ Orbitrap/MS. The extract was incorporated into liposomes, which showed small size (~80 nm), good homogeneity, negative surface charge, and good stability in storage. The biological activity of the extract was evaluated in the human hepatoma (HepG2) cell line, used as model cells. The extract showed no cytotoxic activity and reduced the intracellular reactive oxygen species (ROS) level in stressed cells. The antioxidant activity was further improved when the extract was loaded into liposomes. Moreover, the extract promoted the expression of endogenous antioxidants, such as catalase, superoxide dismutase, and glutathione peroxidase through the Nrf-2 pathway evaluated by RT-PCR.

16.
Bioorg Med Chem ; 27(9): 1863-1870, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30922618

ABSTRACT

New heteroaryl HIV-protease inhibitors bearing a carbamoyl spacer were synthesized in few steps and high yield, from commercially available homochiral epoxides. Different substitution patterns were introduced onto a given isopropanoyl-sulfonamide core that can have either H or benzyl group. The in vitro inhibition activity against recombinant protease showed a general beneficial effect of both carbamoyl moiety and the benzyl group, ranging the IC50 values between 11 and 0.6 nM. In particular, benzofuryl and indolyl derivatives showed IC50 values among the best for such structurally simple inhibitors. Docking analysis allowed to identify the favorable situation of such derivatives in terms of number of interactions in the active site, supporting the experimental results. The inhibition activity was also confirmed in HEK293 mammalian cells and was maintained against protease mutants. Furthermore, the metabolic stability was comparable with that of the commercially available inhibitors.


Subject(s)
Carbamates/chemistry , HIV Protease Inhibitors/chemical synthesis , HIV Protease/genetics , Binding Sites , Carbamates/pharmacology , Catalytic Domain , Drug Resistance, Neoplasm/drug effects , HEK293 Cells , HIV Protease/metabolism , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , Humans , Molecular Docking Simulation , Mutation
17.
Biochim Biophys Acta Biomembr ; 1861(2): 380-386, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30423326

ABSTRACT

ABCC6 is a member of the C subfamily of ATP-binding cassette transporters whose mutations are correlated to Pseudoxanthoma elasticum, an autosomal recessive, progressive disorder characterized by ectopic mineralization and fragmentation of elastic fibers. Structural studies of the entire protein have been hindered by its large size, membrane association, and domain complexity. Studies previously performed have contributed to shed light on the structure and function of the nucleotide binding domains and of the N-terminal region. Here we report the expression in E. coli of the polypeptide E205-G279 contained in the cytoplasmic L0 loop. For the first time structural studies in solution were performed. Far-UV CD spectra showed that L0 is structured, assuming predominantly α-helix in TFE solution and turns in phosphate buffer. Fluorescence spectra indicated some flexibility of the regions containing aromatic residues. 1H NMR spectroscopy identified three helical regions separated by more flexible regions.


Subject(s)
Cytoplasm/metabolism , Multidrug Resistance-Associated Proteins/chemistry , Multidrug Resistance-Associated Proteins/metabolism , Amino Acid Sequence , Circular Dichroism , Humans , Magnetic Resonance Spectroscopy , Multidrug Resistance-Associated Proteins/isolation & purification , Protein Structure, Secondary , Spectrometry, Fluorescence , Structural Homology, Protein , Structure-Activity Relationship
18.
Eur J Med Chem ; 164: 1-7, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30583246

ABSTRACT

With the aim to reduce multidrug resistance several molecules were synthesized and tested for their ability to inhibit ATP-binding cassette (ABC) proteins, which are responsible for drugs transport out from cells. The compound 8-(4-chlorophenyl)-5-methyl-8-[(2Z)-pent-2-en-1-yloxy]-8H-[1,2,4]oxadiazolo[3,4-c][1,4]thiazin-3-one namely 2c, is structurally related to the myocardial-calcium-channel-modulator diltiazem and is considered one of the most efficient P-glycoprotein inhibitors, able to induce apoptosis at low concentrations of doxorubicin in multidrug resistant ovarian cells. In this study experiments were carried out to evaluate other biological activities of compound 2c. We verified the ability of 2c to inhibit ABC transporters do not involved in drug resistance and considering the inhibitory effect of diltiazem on recombinant human carboxylesterase, we observed its inhibitory effect on the esterase activity. Our findings demonstrated that 2c exhibits broad-spectrum activity as ABC transporters inhibitor being able to inhibit ABCC6, a protein belonging to the ABC family although poorly involved in drug resistance. 2c also inhibits cell esterase activity, acetylcholine esterase activity in vitro and cell histone H3 acetylation according to its structural homology with some known HAT inhibitors. The results obtained provide new knowledge on the biological activities of 2c and represent useful information when it is used as an inhibitor of drug resistance.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Diltiazem/analogs & derivatives , Diltiazem/chemistry , Esterases/antagonists & inhibitors , Histones/metabolism , Thiadiazines/pharmacology , ATP-Binding Cassette Transporters/antagonists & inhibitors , Acetylation , Carboxylesterase/antagonists & inhibitors , Diltiazem/pharmacology , Drug Resistance, Multiple/drug effects , Enzyme Inhibitors , Humans , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Thiadiazines/chemistry
19.
Int J Mol Sci ; 19(11)2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30373165

ABSTRACT

Multiple myeloma (MM) is the second most common hematologic malignancy and, although the development of novel agents has improved survival of patients, to date, it remains incurable. Thus, newer and more effective therapeutic strategies against this malignancy are necessary. Plant extracts play an important role in anti-tumor drug discovery. For this reason, in the investigation of novel natural anti-MM agents, we evaluated the phytochemical profiles, in vitro antioxidant activity, and effects on MM cells of Azorella glabra (AG) Wedd. Total polyphenols (TPC), flavonoids (TFC), and terpenoids (TTeC) contents were different among samples and the richest fractions in polyphenols demonstrated a higher antioxidant activity in in vitro assays. Some fractions showed a dose and time dependent anti-proliferative activity on MM cells. The chloroform fraction (CHCl3) showed major effects in terms of reduction of cell viability, induction of apoptosis, and cell cycle arrest on MM cells. The apoptosis induction was also confirmed by the activation of caspase-3. Importantly, the CHCl3 fraction exhibited a negligible effect on the viability of healthy cells. These results encourage further investigations on AG extracts to identify specific bioactive compounds and to define their potential applications in MM.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Apiaceae/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Multiple Myeloma/drug therapy , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Survival/drug effects , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Polyphenols/chemistry , Polyphenols/pharmacology , Terpenes/chemistry , Terpenes/pharmacology
20.
Front Mol Biosci ; 5: 75, 2018.
Article in English | MEDLINE | ID: mdl-30155470

ABSTRACT

The ATP-binding cassette sub-family C member 6 transporter (ABCC6) is an ATP dependent transporter mainly found in the basolateral plasma membrane of hepatic and kidney cells. Mutations in ABCC6 gene were associated to the Pseudoxanthoma elasticum (PXE), an autosomal recessive disease characterized by a progressive ectopic calcification of elastic fibers in dermal, ocular, and vascular tissues. It is reported that the over-expression of ABCC6 in HEK293 cells results in the cellular efflux of ATP and other nucleoside triphosphates, which in turn are rapidly converted into nucleoside monophosphates and pyrophosphate (PPi). Since PPi is an inhibitor of mineralization, it was proposed that the absence of circulating PPi in PXE patients results in the ectopic mineralization, a typical feature of PXE. In the extracellular environment, ATP is converted, not only into pyrophosphate, but also into AMP by an ectonucleosidase, which in turn is transformed into adenosine and phosphate. ABCC6 protein is thus involved in the production of extracellular adenosine and therefore it could have a role in the activation of the purinergic system. In the liver, purinergic signaling has been shown to regulate key basic cellular functions. Our previous studies showed that in ABCC6 knockdown HepG2 cells the expression of some genes, related with the calcification processes, is dysregulated. In this study, experiments have been carried out in order to verify if ABCC6, besides supplying the pyrophosphate required to prevent the mineralization of soft tissues, also plays a role in the activation of the purinergic system. For this purpose, the transport activity of ABCC6 was blocked with Probenecid and the expression of ABCC6 and NT5E was analyzed with real time PCR and western blotting. The results of this study showed that both proteins are downregulated in the presence of Probenecid and upregulated in the presence of adenosine or ATP.

SELECTION OF CITATIONS
SEARCH DETAIL
...