Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37760216

ABSTRACT

Blood sampling in rodents is common practice in scientific studies. Some of the refined methods widely used are the puncture of the saphenous vein or tail vein, or even tail docking. The handling needs of these different blood sampling methods are different and can directly affect stress, increasing the variability of the study. Moreover, there is less aversion and stress if the animal is accustomed to the environment, handling and technique. Therefore, our study aimed to assess the influence of these three blood sampling techniques (saphenous puncture, tail vein puncture and tail vein docking) and the use of previous acclimation on different indicators of animal stress, assessing blood glucose concentrations and faecal corticosterone metabolites (FCMs). Twenty-four young adult male and female C57Bl6/J mice were divided in three groups by sampling method: tail docking (TD), saphenous vein puncture (SV) and caudal vein puncture (CV) groups. All mice were studied with and without acclimation, which was performed during 9 consecutive days. The results showed that both males and females present very similar responses to the different handling and sampling methods without significant differences. Nevertheless, acclimation in all sampling methods decreased glucose and FCM levels significantly. The method that obtained the lowest glucose and FCM levels with significance was saphenous vein puncture. Therefore, we can say that it causes less stress when performing prior acclimation, even when this involves greater handling of the animal. Our results contribute to refinement within the 3R concept and could serve researchers to programme and select a good handling technique and a welfare-friendly blood sampling method for their experiments.

2.
Adv Healthc Mater ; 12(28): e2301577, 2023 11.
Article in English | MEDLINE | ID: mdl-37515468

ABSTRACT

Acute lung injury (ALI) is a severe pulmonary disorder responsible for high percentage of mortality and morbidity in intensive care unit patients. Current treatments are ineffective, so the development of efficient and specific therapies is an unmet medical need. The activation of NLPR3 inflammasome during ALI produces the release of proinflammatory factors and pyroptosis, a proinflammatory form of cell death that contributes to lung damage spreading. Herein, it is demonstrated that modulating inflammasome activation through inhibition of ASC oligomerization by the recently described MM01 compound can be an alternative pharmacotherapy against ALI. Besides, the added efficacy of using a drug delivery nanosystem designed to target the inflamed lungs is determined. The MM01 drug is incorporated into mesoporous silica nanoparticles capped with a peptide (TNFR-MM01-MSNs) to target tumor necrosis factor receptor-1 (TNFR-1) to proinflammatory macrophages. The prepared nanoparticles can deliver the cargo in a controlled manner after the preferential uptake by proinflammatory macrophages and exhibit anti-inflammatory activity. Finally, the therapeutic effect of MM01 free or nanoparticulated to inhibit inflammatory response and lung injury is successfully demonstrated in lipopolysaccharide-mouse model of ALI. The results suggest the potential of pan-inflammasome inhibitors as candidates for ALI therapy and the use of nanoparticles for targeted lung delivery.


Subject(s)
Acute Lung Injury , Inflammasomes , Mice , Animals , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung/metabolism , Macrophages/metabolism , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL
3.
Pharmacol Res ; 183: 106356, 2022 09.
Article in English | MEDLINE | ID: mdl-35843569

ABSTRACT

Many anticancer agents used in clinics induce premature senescence in healthy tissues generating accelerated aging processes and adverse side-effects in patients. Cardiotoxicity is a well-known limiting factor of anticancer treatment with doxorubicin (DOX), a very effective anthracycline widely used as antitumoral therapy in clinical practice, that leads to long-term morbidity and mortality. DOX exposure severely affects the population of cardiac cells in both mice and human hearts by inducing premature senescence, which may represent the molecular basis of DOX-induced cardiomyopathy. Here, we demonstrate that senescence induction in the heart contributes to impaired cardiac function in mice upon DOX treatment. Concomitant elimination of senescent cells with the senolytic Navitoclax in different formulations produces a significant decrease in senescence and cardiotoxicity markers together with the restoration of the cardiac function in mice followed by echocardiography. These results evidence the potential clinical use of senolytic therapies to alleviate cardiotoxicities induced in chemotherapy-treated patients.


Subject(s)
Cardiomyopathies , Cardiotoxicity , Animals , Antibiotics, Antineoplastic/toxicity , Cardiomyopathies/chemically induced , Cardiomyopathies/prevention & control , Cardiotoxicity/drug therapy , Doxorubicin/adverse effects , Humans , Mice , Myocytes, Cardiac , Senotherapeutics
4.
J Control Release ; 337: 14-26, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34265332

ABSTRACT

Acute lung injury (ALI) is a critical inflammatory syndrome, characterized by increased diffuse inflammation and severe lung damage, which represents a clinical concern due to the high morbidity and mortality in critical patients. In last years, there has been a need to develop more effective treatments for ALI, and targeted drug delivery to inflamed lungs has become an attractive research field. Here, we present a nanodevice based on mesoporous silica nanoparticles loaded with dexamethasone (a glucocorticoid extensively used for ALI treatment) and capped with a peptide that targets the TNFR1 receptor expressed in pro-inflammatory macrophages (TNFR-Dex-MSNs) and avoids cargo leakage. TNFR-Dex-MSNs nanoparticles are preferentially internalized by pro-inflammatory macrophages, which overexpressed the TNFR1 receptor, with the subsequent cargo release upon the enzymatic hydrolysis of the capping peptide in lysosomes. Moreover, TNFR-Dex-MSNs are able to reduce the levels of TNF-α and IL-1ß cytokines in activated pro-inflammatory M1 macrophages. The anti-inflammatory effect of TNFR-Dex-MSNs is also tested in an in vivo ALI mice model. The administered nanodevice (intravenously by tail vein injection) accumulated in the injured lungs and the controlled dexamethasone release reduces markedly the inflammatory response (TNF-α IL-6 and IL-1ß levels). The attenuation in lung damage, after treatment with TNFR-Dex-MSNs, is also confirmed by histopathological studies. Besides, the targeted-lung dexamethasone delivery results in a decrease of dexamethasone derived side-effects, suggesting that targeted nanoparticles can be used for therapy in ALI and could help to overcome the clinical limitations of current treatments.


Subject(s)
Acute Lung Injury , Nanoparticles , Acute Lung Injury/drug therapy , Animals , Dexamethasone , Humans , Lung , Mice , Silicon Dioxide
5.
J Control Release ; 323: 624-634, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32376460

ABSTRACT

The induction of senescence produces a stable cell cycle arrest in cancer cells, thereby inhibiting tumor growth; however, the incomplete immune cell-mediated clearance of senescent cells may favor tumor relapse, limiting the long-term anti-tumorigenic effect of such drugs. A combination of senescence induction and the elimination of senescent cells may, therefore, represent an efficient means to inhibit tumor relapse. In this study, we explored the antitumor efficacy of a combinatory senogenic and targeted senolytic therapy in an immunocompetent orthotopic mouse model of the aggressive triple negative breast cancer subtype. Following palbociclib-induced senogenesis and senolysis by treatment with nano-encapsulated senolytic agent navitoclax, we observed inhibited tumor growth, reduced metastases, and a reduction in the systemic toxicity of navitoclax. We believe that this combination treatment approach may have relevance to other senescence-inducing chemotherapeutic drugs and additional tumor types. SIGNIFICANCE: While the application of senescence inducers represents a successful treatment strategy in breast cancer patients, some patients still relapse, perhaps due to the subsequent accumulation of senescent cells in the body that can promote tumor recurrence. We now demonstrate that a combination treatment of a senescence inducer and a senolytic nanoparticle selectively eliminates senescent cells, delays tumor growth, and reduces metastases in a mouse model of aggressive breast cancer. Collectively, our results support targeted senolysis as a new therapeutic opportunity to improve outcomes in breast cancer patients.


Subject(s)
Cellular Senescence , Triple Negative Breast Neoplasms , Animals , Cell Cycle Checkpoints , Humans , Mice
6.
J Vis Exp ; (144)2019 02 26.
Article in English | MEDLINE | ID: mdl-30882775

ABSTRACT

Here, we describe a protocol for the implementation of a heterologous mouse model in which progression of endometriosis can be assessed in real time through noninvasive monitoring of fluorescence emitted by implanted ectopic human endometrial tissue. For this purpose, biopsies of human endometrium are obtained from donor women ongoing oocyte donation. Human endometrial fragments are cultured in the presence of adenoviruses engineered to express cDNA for the reporter fluorescent protein mCherry. Upon visualization, labeled tissues with an optimal rate of fluorescence after infection are subsequently chosen for the implantation in recipient mice. One week prior to the implantation surgery, recipient mice are oophorectomized, and estradiol pellets are placed subcutaneously to sustain the survival and growth of lesions. On the day of surgery mice are anesthetized, and peritoneal cavity accessed through a small (1.5 cm) incision by the linea-alba. Fluorescently labeled implants are tweezed, briefly soaked in glue and attached to the peritoneal layer. Incisions are sutured, and animals left to recover for a couple of days. Fluorescence emitted by endometriotic implants is usually non-invasively monitored every 3 days for 4 weeks with an in vivo imaging system. Variations in the size of endometriotic implants can be estimated in real time by quantification of the mCherry signal and normalization against the initial time-point showing maximal fluorescence intensity. Traditional preclinical rodents of models of endometriosis do not allow non-invasive monitoring of lesion in real time but rather allow evaluation of the effects of drugs assayed at the end point. This protocol allows one to track lesions in real time and is more useful to explore the therapeutic potential of drugs in preclinical models of endometriosis. The main limitation of the model thus generated is that non-invasive monitoring is not possible over long periods of time due to the episomal expression of Ad-virus.


Subject(s)
Endometriosis/physiopathology , Animals , Disease Models, Animal , Female , Humans , Mice , Transfection
7.
J Orthop Res ; 36(1): 174-182, 2018 01.
Article in English | MEDLINE | ID: mdl-28548698

ABSTRACT

Using flexible tethering techniques, porcine models of experimental scoliosis have shown scoliotic curves with vertebral wedging but very limited axial rotation. The aim of this experimental work was to induce a severe progressive scoliosis in a growing porcine model for research purposes. A unilateral spinal bent rigid tether was anchored to two ipsilateral pedicle screws in eight pigs. The spinal tether was removed after 8 weeks. Ten weeks later, the animals were sacrificed. Conventional radiographs and 3D CT-scans were taken to evaluate changes in the alignment of the thoracic spine. After the first 8 weeks of rigid tethering, all animals developed scoliotic curves (mean Cobb angle: 24.3°). Once the interpedicular tether was removed, the scoliotic curves progressed in all animals during 10 weeks reaching a mean Cobb angle of 49.9°. The sagittal alignment of the thoracic spine showed loss of physiologic kyphosis (Mean: -18.3°). Axial rotation ranged from 10° to 49° (Mean 25.7°). Release of the spinal tether results in progression of the deformity with the development of proximal and distal compensatory curves. In conclusion, temporary interpedicular tethering at the thoracic spine induces severe scoliotic curves in pigs, with significant wedging and rotation of the vertebral bodies, and true compensatory curves. CLINICAL RELEVANCE: The tether release model will be used to evaluate corrective non-fusion technologies in future investigations. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:174-182, 2018.


Subject(s)
Disease Models, Animal , Scoliosis/etiology , Thoracic Vertebrae , Animals , Female , Pedicle Screws , Rotation , Scoliosis/diagnostic imaging , Scoliosis/pathology , Scoliosis/therapy , Swine , Tomography, X-Ray Computed
8.
Hum Mol Genet ; 20(24): 4932-46, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21937587

ABSTRACT

Understanding the transcriptional cues that direct differentiation of human embryonic stem cells (hESCs) and human-induced pluripotent stem cells to defined and functional cell types is essential for future clinical applications. In this study, we have compared transcriptional profiles of haematopoietic progenitors derived from hESCs at various developmental stages of a feeder- and serum-free differentiation method and show that the largest transcriptional changes occur during the first 4 days of differentiation. Data mining on the basis of molecular function revealed Rho-GTPase signalling as a key regulator of differentiation. Inhibition of this pathway resulted in a significant reduction in the numbers of emerging haematopoietic progenitors throughout the differentiation window, thereby uncovering a previously unappreciated role for Rho-GTPase signalling during human haematopoietic development. Our analysis indicated that SCL was the 11th most upregulated transcript during the first 4 days of the hESC differentiation process. Overexpression of SCL in hESCs promoted differentiation to meso-endodermal lineages, the emergence of haematopoietic and erythro-megakaryocytic progenitors and accelerated erythroid differentiation. Importantly, intrasplenic transplantation of SCL-overexpressing hESC-derived haematopoietic cells enhanced recovery from induced acute anaemia without significant cell engraftment, suggesting a paracrine-mediated effect.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Embryonic Stem Cells/cytology , Gene Expression Profiling , Hematopoietic Stem Cells/cytology , Proto-Oncogene Proteins/genetics , Transcriptome/genetics , rho GTP-Binding Proteins/metabolism , Acute Disease , Anemia, Hemolytic/genetics , Anemia, Hemolytic/pathology , Anemia, Hemolytic/therapy , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line , Cell Lineage/genetics , Cluster Analysis , Embryonic Stem Cells/metabolism , Erythroid Cells/cytology , Erythroid Cells/metabolism , Flow Cytometry , Hematopoietic Stem Cells/metabolism , Humans , Mice , Myeloid Cells/cytology , Paracrine Communication/genetics , Proto-Oncogene Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Stem Cell Transplantation , T-Cell Acute Lymphocytic Leukemia Protein 1 , rho GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...