Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 224: 121815, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33379040

ABSTRACT

Rapid, periodic monitoring and detection of ethanol (EtOH) after consumption via a non-invasive measurement has been an area of increased research in recent years. Current point-of-care or on-site detection strategies rely on single use sensors which are inadequate for monitoring during a longer period. A low cost, portable and novel approach is developed here for real-time monitoring over several days utilising electrochemical techniques. The sensor shows oxidation of the ethanol in phosphate buffer and artificial sweat using the amperometric response from the application of +0.9 V to the polyaniline modified screen printed electrode using 1 mM EtOH as the averaged amount of EtOH eliminated in sweat after the consumption of one alcoholic beverage. Our enzyme based electrochemical sensor exhibits a qualitative assessment of the presence of EtOH in small volumes (≤40 µL) of 0.1 M sodium bicarbonate and subsequently artificial sweat, with 50 measurements taken daily over 11 days. While quantitative information is not obtained, the sensor system exhibits excellent stability after 3 months' dried storage in this complex biological matrix in an oxygen free cabinet. This addresses one of the key challenges for enzyme based electrochemical sensors, namely, the ability for real-time monitoring in complex biological matrices. The qualitative response illustrates the potential for this sensor to be exploited by non-experts which suggests the promise for their wider application in next-generation wearable electronics necessary for alcohol monitoring.


Subject(s)
Biosensing Techniques , Sweat , Electrochemical Techniques , Electrodes , Ethanol
2.
Sci Rep ; 10(1): 15955, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994507

ABSTRACT

Herein, the efficient serotonin (5-HT) sensing studies have been conducted using the (ZnO NRs)1-x(CNs)x nanocomposites (NCs) having appropriate structural and electrochemical properties. Initially, the different compositions of ZnO nanorods (NRs), with varying content of carbon nanostructures (CNs=MWCNTs and RGO), are prepared using simple in-situ wet chemical method and thereafter these NCs have been characterized for physico-chemical properties in correlation to the 5-HT sensing activity. XRD Rietveld refinement studies reveal the hexagonal Wurtzite ZnO NRs oriented in (101) direction with space group 'P63mc' and both orientation as well as phase of ZnO NRs are also retained in the NCs due to the small content of CNs. The interconnectivity between the ZnO NRs with CNs through different functional moieties is also studied using FTIR analysis; while phases of the constituents are confirmed through Raman analysis. FESEM images of the bare/NCs show hexagonal shaped rods with higher aspect ratio (4.87) to that of others. BET analysis and EIS measurements reveal the higher surface area (97.895 m2/g), lower charge transfer resistance (16.2 kΩ) for the ZCNT 0.1 NCs to that of other NCs or bare material. Thereafter, the prepared NCs are deposited on the screen printed carbon electrode (SPCE) using chitosan as cross-linked agent for 5-HT sensing studies; conducted through cyclic voltammetry (CV) and square wave voltammetry (SWV) measurements. Among the various composites, ZCNT0.1 NCs based electrodes exhibit higher sensing activity towards 5-HT in accordance to its higher surface area, lower particle size and lower charge transfer resistance. SWV measurements provide a wide linear response range (7.5-300 µM); lower limit of detection (0.66 µM), excellent limit of quantification (2.19 µM) and good reproducibility to ZCNT 0.1 NCs as compared to others for 5-HT sensing studies.

3.
Analyst ; 145(12): 4295-4304, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32500895

ABSTRACT

With the rapid growth and appearance of novel psychoactive substances (NPS) onto the global drug market, the need for alternative screening methodologies for implementation within clinical environments is substantial. The immunoassay methods currently in use are inadequate for this new drug trend with the potential for misdiagnosis and subsequent administration of incorrect patient treatment increased. This contribution illustrates a strong proof-of-concept for the use of electrochemiluminescence (ECL) as a screening methodology for NPS within biological fluids, using the hallucinogen scopolamine as a model compound. A low cost, easy-to-use and portable sensor has been developed and successfully employed for the detection of scopolamine at clinically relevant concentrations within a variety of biological matrices, including human pooled serum, urine, artificial saliva and sweat, without any prior sample preparation required. Moreover, assessment of the sensor's potential as a point-of-care wearable device was performed with sample collection from the surface of skin, demonstrating its capability for the qualitative identification of scopolamine despite collection of only minimal volumes off the skins surface. The developed sensor described herein exhibits a strong proof-of-concept for the employment of such ECL sensors as point-of-care devices, where the sensors ease of use and removal of time-consuming and complex sample preparation methods will ultimately increase its usability by physicians, widening the avenues where ECL sensors could be employed.


Subject(s)
Electrochemical Techniques/methods , Luminescent Agents/chemistry , Luminescent Measurements/methods , Psychotropic Drugs/analysis , Scopolamine/analysis , Coordination Complexes/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Fluorocarbon Polymers/chemistry , Humans , Limit of Detection , Luminescent Measurements/instrumentation , Proof of Concept Study , Psychotropic Drugs/blood , Psychotropic Drugs/urine , Saliva/chemistry , Scopolamine/blood , Scopolamine/urine , Sweat/chemistry , Wearable Electronic Devices
4.
Anal Chem ; 92(2): 2216-2223, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31865692

ABSTRACT

Electrochemiluminescence (ECL) has increased in popularity as a result of its inherent advantages, including but not limited to portability, simplicity of use, and low reagent consumption. However, its significant advantages are often over shadowed as a result of its limited specificity. ECL emissions are intrinsically broad and lack the definition of other available analytical techniques. Furthermore, species with similar functional groups have almost identical electrochemical behavior and thus typically emit within approximately the same potential region. Within this contribution we have demonstrate the use of pH controlled ECL to prove the presence of two individual species within a mixed sample. Analysis at a single pH would not provide this information. We have illustrated the potential of this methodology to quantify scopolamine alongside sister tropane alkaloid atropine, a known ECL interferent. Previously the two alkaloids could not be distinguished from one another using a single technique which did not involve a separation strategy. pH controlled ECL is a simple approach to improve the specificity of a basic [Ru(bpy)3]2+ film based sensor. By exploiting molecular characteristics, such as pKa, we have been able to fine-tune our methodology to facilitate identification of analytes previously exhibiting indistinguishable ECL emission. Thus, by improving specificity, while maintaining operational simplicity and inexpensive design, we have been able to highlight the potential power of ECL for identification of structurally similar compounds. Further improvements of specificity, such as demonstrated within this contribution, will only further future applications of ECL sensors across a range of different fields.


Subject(s)
Atropine/analysis , Biosensing Techniques , Electrochemical Techniques , Luminescent Measurements , Scopolamine/analysis , Hydrogen-Ion Concentration , Molecular Structure
5.
Talanta ; 131: 706-11, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25281162

ABSTRACT

The use of the first flow-cell for magnetic assays with an integrated magnet is reported here. The flow injection analysis system (FIA) is used for biotin determination. The reaction scheme is based on a one step competitive assay between free biotin and biotin labeled with horseradish peroxidase (B-HRP). The mixture of magnetic beads modified with streptavidin (Strep-MB), biotin and B-HRP is left 15 min under stirring and then a washing step is performed. After that, 100 µL of the mixture is injected and after 30s 100 µL of 3,3',5,5'-Tetramethylbenzidine (TMB) is injected and the FIAgram is recorded applying a potential of -0.2V. The linear range obtained is from 0.01 to 1 nM of biotin and the sensitivity is 758 nA/nM. The modification and cleaning of the electrode are performed in an easy way due to the internal magnet of the flow cell.


Subject(s)
Biosensing Techniques/methods , Biotin/analysis , Electrochemistry/methods , Electrodes , Flow Injection Analysis/methods , Magnetics , Benzidines/chemistry , Horseradish Peroxidase/metabolism , Immunomagnetic Separation
6.
Anal Chim Acta ; 728: 69-76, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22560283

ABSTRACT

Different very simple single-use alcohol enzyme sensors were developed using alcohol oxidase (AOX) from three different yeast, Hansenula sp., Pichia pastoris and Candida boidinii, and employing three different commercial mediator-based Screen-Printed Carbon Electrodes as transducers. The mediators tested, Prussian Blue, Ferrocyanide and Co-phthalocyanine were included into the ink of the working electrode. The procedure to obtain these sensors consists of the immobilization of the enzyme on the electrode surface by adsorption. For the immobilization, an AOX solution is deposited on the working electrode and left until dried (1h) at room temperature. The best results were obtained with the biosensor using Screen-Printed Co-phthalocyanine/Carbon Electrode and AOX from Hansenula sp. The reduced cobalt-phthalocyanine form is amperometrically detected at +0.4V (vs. Ag pseudo reference electrode). This sensor shows good sensitivity (1211 nA mM(-1)), high precision (2.1% RSD value for the slope value of the calibration plot) and wide linear response (0.05-1.00 mM) for ethanol determination. The sensor provides also accurate results for ethanol quantification in alcoholic drinks.


Subject(s)
Alcoholic Beverages/analysis , Biosensing Techniques/methods , Candida/enzymology , Carbon/chemistry , Ethanol/analysis , Pichia/enzymology , Alcohol Oxidoreductases , Electrodes , Enzymes, Immobilized/metabolism , Ethanol/metabolism , Ferrocyanides/chemistry , Indoles/chemistry , Organometallic Compounds/chemistry , Oxidation-Reduction , Sensitivity and Specificity
7.
Talanta ; 88: 432-8, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22265522

ABSTRACT

The first fructose sensor using a commercial screen-printed ferrocyanide/carbon electrodes (SPFCE) is reported here. The ferrocyanide is included in the carbon ink of the commercial screen-printed carbon electrode. The immobilization of enzyme d-fructose dehydrogenase (FDH) was carried out in an easy way. An aliquot of 10µL FDH was deposited on the electrode surface and left there until dried (approximately 1h) at room temperature. The sensor, so constructed, shows a good sensitivity to fructose (1.25µA/mM) with a slope deviation of ±0.02µA/mM and a linear range comprised between 0.1 and 1mM of fructose, with a limit of detection of 0.05mM. These sensors show good intersensors reproducibility after a previous pretreatment and a high stability. Fructose was determined in real samples as honey, Cola, fruit juices (orange, tomato, apple and pineapple), red wine, red and white grapes, musts and liquor of peach with a good accuracy.


Subject(s)
Biosensing Techniques , Carbohydrate Dehydrogenases , Ferrocyanides/chemistry , Fructose/analysis , Calibration , Carbon/chemistry , Electrochemistry , Electrodes , Enzymes, Immobilized , Fruit/chemistry , Honey/analysis , Hydrogen-Ion Concentration , Kinetics , Limit of Detection , Reproducibility of Results , Signal-To-Noise Ratio , Wine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...