Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(2): e0263524, 2022.
Article in English | MEDLINE | ID: mdl-35143539

ABSTRACT

Beyrichitine ammonoids of NV Nevada reveal a high taxonomic diversity of Anisian (Middle Triassic). This diversity is, however, in contrast to their relatively low morphologic disparity. Depending on the exact definition, morphologic disparity of a data set is a direct consequence of the sum of all ontogenetic changes. In the past, however, the interplay of both morphological processes has only rarely been addressed. Using geometric morphometric methods, this study aims at a quantification of allometric processes and the morphologic disparity of beyrichitine ammonoids. The multivariate statistical analysis revealed that morphologic disparity, intraspecific variation respectively, within and between the studied species seems to be the result of deviations in the ontogenetic allometric growth pattern (i.e. heterochrony). During deposition of the studied stratigraphic sequence, a general progressive pedomorphism (juvenilization) was observed. The intraspecific variability pattern coincides with the total morphologic disparity of the analyzed species, which suggests that intraspecific variability facilitated morphologic disparity. The comparison of ontogenetic allometric patterns and changes in intraspecific variation and morphologic disparity are likely to refine our understanding of the intrinsic factors influencing the speciation of this group.


Subject(s)
Biological Evolution , Crustacea/genetics , Fossils , Genetic Variation , Animals , Crustacea/anatomy & histology , Crustacea/classification , Extinction, Biological , Gene Ontology , Nevada , Species Specificity
2.
PeerJ ; 9: e10931, 2021.
Article in English | MEDLINE | ID: mdl-33717689

ABSTRACT

Ammonoids reached their greatest diversity during the Triassic period. In the early Middle Triassic (Anisian) stage, ammonoid diversity was dominated by representatives of the family Ceratitidae. High taxonomic diversity can, however, be decoupled from their morphologic disparity. Due to its high phenotypic variability, the high diversity of ceratitids of the Anisian of Nevada was initially assumed to be caused by artificial over-splitting. This study aims to contribute data to settle this issue by applying geometric morphometrics methods, using landmarks and semi-landmarks, in the study of ontogenetic cross-sections of ammonoids for the first time. The results reveal that alterations in ontogenetic trajectories, linked to heterochronic processes, lead to the morphologic diversification of the species studied herein. Our knowledge, based on these ontogenetic changes, challenge the traditional treatment of species using solely adult characters for their distinction. This study furthermore demonstrates that the high diversity of the Anisian ammonoid assemblages of Nevada based on the traditional nomenclatoric approach is regarded to be reasonably accurate.

SELECTION OF CITATIONS
SEARCH DETAIL
...