Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(11): 9495-9515, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38780432

ABSTRACT

We describe the discovery of a thioester-containing glucocorticoid receptor modulator (GRM) payload and the corresponding antibody-drug conjugate (ADC). Payload 6 was designed for rapid hepatic inactivation to minimize systemic exposure of nonconjugated GRM. Mouse PK indicated that 6 is cleared 10-fold more rapidly than a first-generation GRM payload, resulting in 10-fold lower exposure and 3-fold decrease in Cmax. The anti-mTNF conjugate ADC5 fully inhibited inflammation in mouse contact hypersensitivity with minimal effects on corticosterone, a biomarker for systemic GRM effects, at doses up to and including 100 mg/kg. Concomitant inhibition of P1NP suggests potential delivery to cells involved in the remodeling of bone, which may be a consequence of TNF-targeting or bystander payload effects. Furthermore, ADC5 fully suppressed inflammation in collagen-induced arthritis mouse model after one 10 mg/kg dose for 21 days. The properties of the anti-hTNF conjugate were suitable for liquid formulation and may enable subcutaneous dosing.


Subject(s)
Arthritis, Experimental , Corticosterone , Immunoconjugates , Tumor Necrosis Factor-alpha , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Mice , Immunoconjugates/pharmacology , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Immunoconjugates/therapeutic use , Corticosterone/blood , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/antagonists & inhibitors , Inflammation/drug therapy , Inflammation/metabolism , Glucocorticoids/pharmacology , Humans , Male , Disease Models, Animal
2.
Bioconjug Chem ; 34(10): 1835-1850, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37788373

ABSTRACT

Antibody-drug conjugates consist of potent small-molecule payloads linked to a targeting antibody. Payloads must possess a viable functional group by which a linker for conjugation can be attached. Linker-attachment options remain limited for the connection to payloads via hydroxyl groups. A releasing group based on 2-aminopyridine was developed to enable stable attachment of para-aminobenzyl carbamate (PABC) linkers to the C21-hydroxyl group of budesonide, a glucocorticoid receptor agonist. Payload release involves a cascade of two self-immolative events that are initiated by the protease-mediated cleavage of the dipeptide-PABC bond. Budesonide release rates were determined for a series of payload-linker intermediates in buffered solution at pH 7.4 and 5.4, leading to the identification of 2-aminopyridine as the preferred releasing group. Addition of a poly(ethylene glycol) group improved linker hydrophilicity, thereby providing CD19-budesonide ADCs with suitable properties. ADC23 demonstrated targeted delivery of budesonide to CD19-expressing cells and inhibited B-cell activation in mice.


Subject(s)
Immunoconjugates , Mice , Animals , Immunoconjugates/chemistry , Carbamates/chemistry , Budesonide
3.
J Med Chem ; 66(17): 12544-12558, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37656698

ABSTRACT

Stable attachment of drug-linkers to the antibody is a critical requirement, and for maleimide conjugation to cysteine, it is achieved by ring hydrolysis of the succinimide ring. During ADC profiling in our in-house property screening funnel, we discovered that the succinimide ring open form is in equilibrium with the ring closed succinimide. Bromoacetamide (BrAc) was identified as the optimal replacement, as it affords stable attachment of the drug-linker to the antibody while completely removing the undesired ring open-closed equilibrium. Additionally, BrAc also offers multiple benefits over maleimide, especially with respect to homogeneity of the ADC structure. In combination with a short, hydrophilic linker and phosphate prodrug on the payload, this afforded a stable ADC (ABBV-154) with the desired properties to enable long-term stability to facilitate subcutaneous self-administration.


Subject(s)
Immunoconjugates , Prodrugs , Receptors, Glucocorticoid , Tumor Necrosis Factor Inhibitors , Antibodies , Prodrugs/pharmacology , Glucocorticoids , Maleimides , Immunoconjugates/pharmacology
4.
J Med Chem ; 66(13): 9161-9173, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37379257

ABSTRACT

To facilitate subcutaneous dosing, biotherapeutics need to exhibit properties that enable high-concentration formulation and long-term stability in the formulation buffer. For antibody-drug conjugates (ADCs), the introduction of drug-linkers can lead to increased hydrophobicity and higher levels of aggregation, which are both detrimental to the properties required for subcutaneous dosing. Herein we show how the physicochemical properties of ADCs could be controlled through the drug-linker chemistry in combination with prodrug chemistry of the payload, and how optimization of these combinations could afford ADCs with significantly improved solution stability. Key to achieving this optimization is the use of an accelerated stress test performed in a minimal formulation buffer.


Subject(s)
Immunoconjugates , Immunoconjugates/chemistry , Hydrophobic and Hydrophilic Interactions
7.
J Med Chem ; 65(23): 15893-15934, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36394224

ABSTRACT

Using a convergent synthetic route to enable multiple points of diversity, a series of glucocorticoid receptor modulators (GRM) were profiled for potency, selectivity, and drug-like properties in vitro. Despite covering a large range of diversity, profiling the nonconjugated small molecule was suboptimal and they were conjugated to a mouse antitumor necrosis factor (TNF) antibody using the MP-Ala-Ala linker. Screening of the resulting antibody drug conjugates (ADCs) provided a better assessment of efficacy and physical properties, reinforcing the need to conduct structure-activity relationship studies on the complete ADC. DAR4 ADCs were screened in an acute mouse contact hypersensitivity model measuring biomarkers to ensure a sufficient therapeutic window. In a chronic mouse arthritis model, mouse anti-TNF GRM ADCs were efficacious after a single dose of 10 mg/kg i.p. for over 30 days. Data on the unconjugated payloads and mouse surrogate anti-TNF ADCs identified payload 17 which was conjugated to a human anti-TNF antibody and advanced to the clinic as ABBV-3373.


Subject(s)
Glucocorticoids , Immunoconjugates , Animals , Humans , Mice , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Receptors, Glucocorticoid , Tumor Necrosis Factor Inhibitors
8.
J Med Chem ; 65(6): 4500-4533, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35133822

ABSTRACT

Glucocorticoid receptor modulators (GRM) are the first-line treatment for many immune diseases, but unwanted side effects restrict chronic dosing. However, targeted delivery of a GRM payload via an immunology antibody-drug conjugate (iADC) may deliver significant efficacy at doses that do not lead to unwanted side effects. We initiated our α-TNF-GRM ADC project focusing on identifying the optimal payload and a linker that afforded stable attachment to both the payload and antibody, resulting in the identification of the synthetically accessible maleimide-Gly-Ala-Ala linker. DAR 4 purified ADCs were shown to be more efficacious in a mouse contact hypersensitivity model than the parent α-TNF antibody. Analysis of P1NP and corticosterone biomarkers showed there was a sufficient therapeutic window between efficacy and unwanted effects. In a chronic mouse arthritis model, α-TNF-GRM ADCs were more efficacious than both the parent α-TNF mAb and an isotype control bearing the same GRM payload.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Animals , Antibodies , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Mice , Receptors, Glucocorticoid
9.
Bioorg Med Chem Lett ; 19(6): 1722-5, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19217782

ABSTRACT

COT (Tpl2 in mice) is a serine/threonine MAP3 kinase that regulates production of TNF-alpha and other pro-inflammatory cytokines such as IL-1beta via the ERK/MAP kinase pathway. As TNF-alpha and IL-1beta are clinically validated targets for therapeutic intervention in rheumatoid arthritis (RA), blocking COT provides a potential avenue for amelioration of disease. Herein we describe identification of a cellular active selective small molecule inhibitor of COT kinase.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pyridines/chemical synthesis , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Arthritis, Rheumatoid/drug therapy , Chemistry, Pharmaceutical/methods , Drug Design , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Interleukin-1beta/metabolism , Ligands , MAP Kinase Kinase Kinases/chemistry , Mice , Molecular Structure , Proto-Oncogene Proteins/chemistry , Pyridines/pharmacology , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/metabolism
11.
Bioorg Med Chem Lett ; 18(5): 1573-6, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18242988

ABSTRACT

High-throughput screening identified a low molecular weight antagonist of CXCR3 displaying micromolar activity in a membrane filtration-binding assay. Systematic modification of the benzimidazole core and tethered acetophenone moiety established tractable SAR of analogs with improved physicochemical properties and sub-micromolar activity across both human and murine receptors.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Receptors, CXCR3/antagonists & inhibitors , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...