Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 13(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36292856

ABSTRACT

The addition of flowering companion plants within or around crop fields is a promising strategy to strengthen pest regulation by their natural enemies. Aromatic plants are frequently used as companion plants, but their effects on natural enemies remain unclear under field conditions. Here, we evaluated the effects of two aromatic plant species on the parasitism of the codling moth (Cydia pomonella) and the recruitment of predatory arthropods (spiders, earwigs) in a factorial field experiment. Apple trees were intercropped with basil (Ocimum basilicum), French marigolds (Tagetes patula), or ryegrass (Lolium perenne). The association between apple trees and O. basilicum increases codling moth parasitism, but does not affect arthropod predator abundances. Furthermore, we find a general negative effect of T. patula on arthropod diversities and abundances, including the pest and its natural enemies. Finally, changes in the parasitism rate and arthropod community structure due to the aromatic plants do not reduce codling moth density or associated apple damage. Further experiments are needed to determine the mechanisms involved in aromatic plant effects on pest repellence and on natural enemy recruitment (volatile organic compound composition, floral resource supply, or pest density dependence).

2.
Sci Rep ; 12(1): 3680, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256651

ABSTRACT

The decline of arthropod populations observed in many parts of the world is a major component of the sixth mass extinction with intensive agriculture being one of its main drivers. Biodiversity-friendly farming practices are taking centre stage in the recovery process. In vineyards, vegetation cover is commonly used for production purposes, to reduce soil compaction by machinery use and soil erosion. Here we examined the effects of vegetation cover and soil management on the abundance of ground- (spiders, beetles, Hemiptera and harvestmen) and canopy-dwelling (wild bees, green lacewings, beetles and Hemiptera) arthropods in three categories of vineyards: (i) vineyards with no vegetation, (ii) partially vegetated (every second inter-row is vegetated) and (iii) all inter-rows are vegetated. We recorded a general positive effect of a decrease in soil perturbation intensity and corresponding higher vegetation cover on arthropod abundance. Plant species richness was the most important vegetation parameter, with a positive effect on spiders, harvestmen, hemipterans and beetles (ground and canopy) abundances. Using a path analysis, we also highlighted the central role of inter-row vegetation management in trophic and non-trophic relationships between vegetation and arthropods, and between arthropod groups. Our results demonstrate the benefits of a softer soil management preserving a diverse vegetation cover for the conservation of arthropods in Mediterranean vineyards.


Subject(s)
Arthropods , Coleoptera , Spiders , Animals , Bees , Biodiversity , Ecosystem , Farms , Soil
3.
Am J Bot ; 105(7): 1123-1132, 2018 07.
Article in English | MEDLINE | ID: mdl-29985539

ABSTRACT

PREMISE OF THE STUDY: Genetic differentiation in plant species may result from adaptation to environmental conditions, but also from stochastic processes. The drivers selecting for local adaptation and the contribution of adaptation to genetic differentiation are often unknown. Restoration and succession studies have revealed different colonization patterns for Brachypodium retusum, a common Mediterranean grass. In order to understand these patterns, we tested population differentiation and adaptation to different environmental factors. METHODS: Structured sampling of 12 populations from six sites and two soil types within site was used to analyze the spatial and environmental structure of population differentiation. Sampling sites differ in grazing intensity and climate. We tested germination and growth in a common garden. In subsets, we analyzed the differential response to stone cover, grazing and soil moisture. KEY RESULTS: We found significant differences among populations. The site explained population differentiation better than soil, suggesting a dominant influence of climate and/or genetic drift. Stone cover had a positive influence on seedling establishment, and populations showed a differential response. However, this response was not related to environmental differences between collection sites. Regrowth after clipping was higher in populations from the more intensively grazed Red Mediterranean soils suggesting an adaptation to grazing. Final germination was generally high even under drought, but germination response to differences in soil moisture was similar across populations. CONCLUSIONS: Adaptive population differentiation in germination and early growth may have contributed to different colonization patterns. Thus, the provenance of B. retusum needs to be carefully considered in ecological restoration.


Subject(s)
Adaptation, Physiological , Brachypodium/physiology , Soil/chemistry , Climate , Droughts , Germination , Grassland , Herbivory , Humidity , Seedlings/physiology , Seeds/physiology
4.
Am J Bot ; 100(6): 1162-70, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23720429

ABSTRACT

PREMISE OF THE STUDY: Although there is much empirical evidence for local adaptation in plant populations, spatial scales and drivers are still poorly understood. We used the annual species Brassica nigra to (1) test scales of differentiation and adaptation among coastal wetland and inland river-valley populations and (2) analyze herbivory as a potential driver of local plant adaptation. • METHODS: In a common garden experiment, we compared seven populations collected at different geographic scales in both habitat types. To evaluate adaptation to herbivory, we removed the aphid Brevicoryne brassicae from half of the plants. In a reciprocal transplant experiment, we tested local adaptation in two coastal and two river-valley populations. Natural colonization by dominant herbivore species was recorded. • KEY RESULTS: In the common garden, the river-valley populations showed a higher performance than the coastal ones, whereas large-scale differentiation within habitats was small. Such a differentiation among plant populations was also found in spontaneous infestation by several herbivore groups but not in the plant response to aphid removal. In the reciprocal transplant experiment at natural sites, both plant populations performed better in their home habitat, indicating local adaptation to environmental differences between coastal and river-valley sites. A lower aphid infestation on local plants suggests a contribution of herbivores to local plant adaptation and illustrates the need for reciprocal transplant experiments to evaluate this contribution. • CONCLUSIONS: Our study demonstrates that adaptive differentiation among habitats may be stronger at relatively small scales than large-scale adaptation within these habitats. It provides new insights into the role of herbivory in driving local plant adaptation.


Subject(s)
Adaptation, Physiological/physiology , Brassica napus/physiology , Ecosystem , Animals , Aphids/physiology , Brassica napus/genetics , Demography , Herbivory
5.
Oecologia ; 165(4): 971-81, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20960010

ABSTRACT

Local adaptation and population differentiation of plants are well documented, but studies on interactions with natural enemies are rare. In particular, evidence for plant adaptation to the local biotic environment, such as herbivores remains poor. We used the black mustard Brassica nigra, an annual species of river valley and coastal habitats to (1) analyse population differentiation in plant traits and herbivory in a common garden experiment, (2) examine home versus away differences in a reciprocal transplant experiment and (3) test whether plants are adapted to local herbivores or vice versa under standard greenhouse conditions. In the common garden experiment, we found significant differentiation in plant traits, leaf damage and herbivore number among seven populations of B. nigra from France and Germany (distance 15-1,000 km). Differences were particularly strong among coastal and river valley populations and did not necessarily increase with geographical distance. A herbivore removal treatment did not change population differentiation when compared with the control allowing natural colonisation. The reciprocal transplant experiment at a scale of 15-30 km did not reveal local plant adaptation, whilst one dominant herbivore species (Meligethes aeneus) occurred in significantly higher numbers on local plants. A greenhouse experiment combining three aphid (Brevicoryne brassicae) and plant populations of the same provenance indicated herbivore adaptation to their local plants rather than plant adaptation, but overall contrasts between local and non-local combinations were not significant. The results suggest that herbivores may counteract local plant adaptation to other environmental factors. Our study has important implications for plant translocations in ecological restoration projects.


Subject(s)
Aphids/physiology , Ecosystem , Mustard Plant/physiology , Adaptation, Physiological , Animals , Feeding Behavior/physiology , France , Germany , Population Dynamics
6.
Am J Bot ; 97(1): 94-100, 2010 Jan.
Article in English | MEDLINE | ID: mdl-21622370

ABSTRACT

Long-distance transplantation of seed material as done in restoration programs has raised concerns about the risks associated with the introduction of maladapted genotypes that may hybridize with neighboring native conspecifics and decrease local population fitness (outbreeding depression). We studied the consequences of gene flow from foreign provenances into local populations in the common grassland species Plantago lanceolata (Plantaginaceae). Three generations of intraspecific hybrids (F(1), F(2), and backcross to the local plants) were produced by controlled crossings between local plants and plants from geographically or environmentally distant populations. Their performance was compared to that of within-population crosses in a field experiment. Early growth in some interpopulation hybrids was significantly reduced, and this decrease in performance was higher in progeny of crosses with the local population from a different habitat than with geographically distant populations. At the end of the growing season, most fitness-related traits of the interpopulation hybrids were close to the average of their parents. Crosses with low-performing foreign parents therefore resulted in reduced fitness of the hybrids compared to the local plants and dilution of local adaptation. We conclude that the introduction of maladapted populations from distant or ecologically distinct environments might, at least temporarily, decrease the fitness of neighboring local plants.

7.
New Phytol ; 180(2): 524-533, 2008.
Article in English | MEDLINE | ID: mdl-18627495

ABSTRACT

Genetic differentiation among plant populations and adaptation to local environmental conditions are well documented. However, few studies have examined the potential contribution of plant antagonists, such as insect herbivores and pathogens, to the pattern of local adaptation. Here, a reciprocal transplant experiment was set up at three sites across Europe using two common plant species, Holcus lanatus and Plantago lanceolata. The amount of damage by the main above-ground plant antagonists was measured: a rust fungus infecting Holcus and a specialist beetle feeding on Plantago, both in low-density monoculture plots and in competition with interspecific neighbours. Strong genetic differentiation among provenances in the amount of damage by antagonists in both species was found. Local provenances of Holcus had significantly higher amounts of rust infection than foreign provenances, whereas local provenances of Plantago were significantly less damaged by the specialist beetle than the foreign provenances. The presence of surrounding vegetation affected the amount of damage but had little influence on the ranking of plant provenances. The opposite pattern of population differentiation in resistance to local antagonists in the two species suggests that it will be difficult to predict the consequences of plant translocations for interactions with organisms of higher trophic levels.


Subject(s)
Adaptation, Physiological , Basidiomycota , Coleoptera , Holcus/growth & development , Plant Diseases , Plantago/growth & development , Animals , Feeding Behavior , Genetic Variation , Holcus/microbiology , Plant Diseases/microbiology , Plantago/microbiology
8.
Ecology ; 88(2): 424-33, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17479760

ABSTRACT

Evolutionary theory suggests that divergent natural selection in heterogeneous environments can result in locally adapted plant genotypes. To understand local adaptation it is important to study the ecological factors responsible for divergent selection. At a continental scale, variation in climate can be important while at a local scale soil properties could also play a role. We designed an experiment aimed to disentangle the role of climate and (abiotic and biotic) soil properties in local adaptation of two common plant species. A grass (Holcus lanatus) and a legume (Lotus corniculatus), as well as their local soils, were reciprocally transplanted between three sites across an Atlantic-Continental gradient in Europe and grown in common gardens in either their home soil or foreign soils. Growth and reproductive traits were measured over two growing seasons. In both species, we found significant environmental and genetic effects on most of the growth and reproductive traits and a significant interaction between the two environmental effects of soil and climate. The grass species showed significant home site advantage in most of the fitness components, which indicated adaptation to climate. We found no indication that the grass was adapted to local soil conditions. The legume showed a significant home soil advantage for number of fruits only and thus a weak indication of adaptation to soil and no adaptation to climate. Our results show that the importance of climate and soil factors as drivers of local adaptation is species-dependent. This could be related to differences in interactions between plant species and soil biota.


Subject(s)
Adaptation, Physiological , Climate , Holcus/physiology , Lotus/physiology , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...