Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 25(Pt 5): 1517-1528, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30179193

ABSTRACT

Extreme ultraviolet (XUV) and X-ray free-electron lasers enable new scientific opportunities. Their ultra-intense coherent femtosecond pulses give unprecedented access to the structure of undepositable nanoscale objects and to transient states of highly excited matter. In order to probe the ultrafast complex light-induced dynamics on the relevant time scales, the multi-purpose end-station CAMP at the free-electron laser FLASH has been complemented by the novel multilayer-mirror-based split-and-delay unit DESC (DElay Stage for CAMP) for time-resolved experiments. XUV double-pulses with delays adjustable from zero femtoseconds up to 650 picoseconds are generated by reflecting under near-normal incidence, exceeding the time range accessible with existing XUV split-and-delay units. Procedures to establish temporal and spatial overlap of the two pulses in CAMP are presented, with emphasis on the optimization of the spatial overlap at long time-delays via time-dependent features, for example in ion spectra of atomic clusters.

2.
J Chem Phys ; 147(4): 044303, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-28764360

ABSTRACT

The electronic properties of sp2/sp3 diamondoids in the crystalline state and in the gas phase are presented. Apparent differences in electronic properties experimentally observed by resonance Raman spectroscopy in the crystalline/gas phase and absorption measurements in the gas phase were investigated by density functional theory computations. Due to a reorganization of the molecular orbitals in the crystalline phase, the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy gaps are lowered significantly by 0.5 eV-1 eV. The π → π* transition is responsible for large absorption in both gas and crystalline phases. It further causes a large increase in the Raman intensity of the C=C stretch vibration when excited resonantly. By resonance Raman spectroscopy we were able to determine the C=C bond length of the trishomocubane dimer to exhibit 1.33 Å in the ground and 1.41 Å in the excited state.

3.
J Am Chem Soc ; 139(32): 11132-11137, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28737388

ABSTRACT

Recent theoretical work has identified functionalized diamondoids as promising candidates for the tailoring of fluorescent nanomaterials. However, experiments confirming that optical gap tuning can be achieved through functionalization have, up until now, found only systems where fluorescence is quenched. We address this shortcoming by investigating a series of methylated adamantanes. For the first time, a class of functionalized diamondoids is shown to fluoresce in the gas phase. In order to understand the evolution of the optical and electronic structure properties with degree of functionalization, photoelectron spectroscopy was used to map the occupied valence electronic structure, while absorption and fluorescence spectroscopies yielded information about the unoccupied electronic structure and postexcitation relaxation behavior. The resulting spectra were modeled by (time-dependent) density functional theory. These results show that it is possible to overcome fluorescence quenching when functionalizing diamondoids and represent a significant step toward tailoring the electronic structure of these and other semiconductor particles in a manner suitable to applications.

4.
Article in English | MEDLINE | ID: mdl-26764683

ABSTRACT

Motivated by experiments on sheared suspensions that show a transition between ordered and disordered phases, we here study the long-time behavior of a sheared and overdamped two-dimensional system of particles interacting by repulsive forces. As a function of interaction strength and shear rate we find transitions between phases with vanishing and large single-particle diffusion. In the phases with vanishing single-particle diffusion, the system evolves towards regular lattices, usually on very slow time scales. Different lattices can be approached, depending on interaction strength and forcing amplitude. The disordered state appears in parameter regions where the regular lattices are unstable. Correlation functions between the particles reveal the formation of shear bands. In contrast to single-particle densities, the spatially resolved two-particle correlation functions vary with time and allow to determine the phase within a period. As in the case of the suspensions, motion in the state with low diffusivity is essentially reversible, whereas in the state with strong diffusion it is not.

5.
Nature ; 513(7516): 45-53, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25186899

ABSTRACT

Rainfall on Earth is most intense in the intertropical convergence zone (ITCZ), a narrow belt of clouds centred on average around six degrees north of the Equator. The mean position of the ITCZ north of the Equator arises primarily because the Atlantic Ocean transports energy northward across the Equator, rendering the Northern Hemisphere warmer than the Southern Hemisphere. On seasonal and longer timescales, the ITCZ migrates, typically towards a warming hemisphere but with exceptions, such as during El Niño events. An emerging framework links the ITCZ to the atmospheric energy balance and may account for ITCZ variations on timescales from years to geological epochs.


Subject(s)
Atmosphere , Motion , Rain , Temperature , Tropical Climate , Arctic Regions , Atlantic Ocean , El Nino-Southern Oscillation/history , Feedback , History, 20th Century , History, Ancient , Ice Cover , Models, Theoretical , Pacific Ocean , Seasons , Wind
6.
J Biomed Opt ; 17(12): 126009, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23208220

ABSTRACT

A main field in biomedical optics research is diffuse optical tomography, where intensity variations of the transmitted light traversing through tissue are detected. Mathematical models and reconstruction algorithms based on finite element methods and Monte Carlo simulations describe the light transport inside the tissue and determine differences in absorption and scattering coefficients. Precise knowledge of the sample's surface shape and orientation is required to provide boundary conditions for these techniques. We propose an integrated method based on structured light three-dimensional (3-D) scanning that provides detailed surface information of the object, which is usable for volume mesh creation and allows the normalization of the intensity dispersion between surface and camera. The experimental setup is complemented by polarization difference imaging to avoid overlaying byproducts caused by inter-reflections and multiple scattering in semitransparent tissue.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Lighting/methods , Pattern Recognition, Automated/methods , Tomography, Optical/methods , Image Enhancement/methods , Light , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...