Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Appl Physiol (1985) ; 135(3): 559-571, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37391885

ABSTRACT

In the peripheral and cerebral vasculature, the impact of aging and sex on the endothelial-independent functional capacity of vascular smooth muscle cells (VSMCs) is not well understood, nor is it known whether such VSMC functions in these vascular beds reflect one another. Therefore, endothelium-independent dilation, at both the conduit (Δ diameter) and microvascular (Δ vascular conductance, VC) level, elicited by sublingual nitroglycerin (NTG, 0.8 mg of Nitrostat), compared with sham-delivery (control), was assessed using Doppler ultrasound in the popliteal (PA) and middle cerebral (MCA) artery of 20 young [23 ± 4 yr, 10 males (YM)/10 females (YF)] and 21 old [69 ± 5 yr, 11 males (OM)/10 females (OF)] relatively healthy adults. In the PA, compared with zero, NTG significantly increased diameter in all groups (YM: 0.29 ± 0.13, YF: 0.35 ± 0.26, OM: 0.30 ± 0.18, OF: 0.31 ± 0.14 mm), while control did not. The increase in VC only achieved significance in the OF (0.22 ± 0.31 mL/min/mmHg). In the MCA, compared with zero, NTG significantly increased diameter and VC in all groups (YM: 0.89 ± 0.30, 1.06 ± 1.28; YF: 0.97 ± 0.31, 1.84 ± 1.07; OM: 0.90 ± 0.42, 0.72 ± 0.99; OF: 0.74 ± 0.32, 1.19 ± 1.18, mm and mL/min/mmHg, respectively), while control did not. There were no age or sex differences or age-by-sex interactions for both the NTG-induced PA and MCA dilation and VC. In addition, PA and MCA dilation and VC responses to NTG were not related when grouped by age, sex, or as all subjects (r = 0.04-0.44, P > 0.05). Thus, peripheral and cerebral endothelial-independent VSMC function appears to be unaffected by age or sex, and variations in such VSMC function in one of these vascular beds are not reflected in the other.NEW & NOTEWORTHY To confidently explain peripheral and cerebral vascular dysfunction, it is essential to have a clear understanding of the endothelial-independent function of VSMCs across age and sex. By assessing endothelium-independent dilation using sublingual nitroglycerin, endothelial-independent VSMC function in the periphery (popliteal artery), and in the cerebral circulation (middle cerebral artery), was not different due to age or sex. In addition, endothelial-independent VSMC function in one of these vascular beds is not reflected in the other.


Subject(s)
Nitroglycerin , Vasodilator Agents , Female , Humans , Male , Aging , Brachial Artery/physiology , Endothelium, Vascular/physiology , Nitroglycerin/pharmacology , Vasodilation/physiology , Vasodilator Agents/pharmacology , Young Adult , Adult , Aged
3.
J Appl Physiol (1985) ; 132(3): 773-784, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35112931

ABSTRACT

As a deficiency in tetrahydrobiopterin (BH4), a cofactor for endothelial nitric oxide synthase, has been implicated in the age-related decline in vascular function, this study aimed to determine the impact of acute BH4 supplementation on flow-mediated vasodilation (FMD) in old adults. Two approaches were used: 1) A multiday, double-blind, placebo-controlled, crossover design measuring, FMD [ΔFMD (mm), %FMD (%)] and shear rate area under the curve (SR AUC) in nine old subjects (73 ± 8 yr) with either placebo (placebo) or BH4 (≈10 mg/kg, post), and 2) a single experimental day measuring FMD in an additional 13 old subjects (74 ± 7 yr) prior to (pre) and 4.5 h after ingesting BH4 (≈10 mg/kg). With the first experimental approach, acute BH4 intake did not significantly alter FMD (ΔFMD: 0.17 ± 0.03 vs. 0.13 ± 0.02 mm; %FMD: 3.3 ± 0.61 vs. 2.9 ± 0.4%) or SR AUC (30,280 ± 4,428 vs. 37,877 ± 9,241 s-1) compared with placebo. Similarly, with the second approach, BH4 did not significantly alter FMD (ΔFMD: 0.09 ± 0.02 vs. 0.12 ± 0.03 mm; %FMD: 2.2 ± 0.6 vs. 2.9 ± 0.6%) or SR AUC (37,588 ± 6,753 vs. 28,996 ± 3,735 s-1) compared with pre. Moreover, when the two data sets were combined, resulting in a greater sample size, there was still no evidence of an effect of BH4 on vascular function in these old subjects. Importantly, both plasma BH4 and 7,8-dihydrobiopterin (BH2), the oxidized form of BH4, increased significantly with acute BH4 supplementation. Consequently, the ratio of BH4/BH2, recognized to impact vascular function, was unchanged. Thus, acute BH4 supplementation does not correct vascular dysfunction in the old.NEW & NOTEWORTHY Despite two different experimental approaches, acute BH4 supplementation did not affect vascular function in older adults, as measured by flow-mediated vasodilation. Plasma levels of both BH4 and BH2, the BH4 oxidized form, significantly increased after acute BH4 supplementation, resulting in an unchanged ratio of BH4/BH2, a key determining factor for endothelial nitric oxide synthase coupling. Therefore, likely due to the elevated oxidative stress with advancing age, acute BH4 supplementation does not correct vascular dysfunction in the old.


Subject(s)
Endothelium, Vascular , Nitric Oxide Synthase Type III , Aged , Biopterins/analogs & derivatives , Dietary Supplements , Humans , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress
4.
Exp Physiol ; 106(10): 2133-2147, 2021 10.
Article in English | MEDLINE | ID: mdl-34411365

ABSTRACT

NEW FINDINGS: What is the central question of this study? The passive leg movement (PLM) assessment of vascular function utilizes the blood flow response in the common femoral artery (CFA): what is the impact of baseline CFA blood flow on the PLM response? What is the main finding and its importance? Although an attenuated PLM response is not an obligatory consequence of increased baseline CFA blood flow, increased blood flow through the deep femoral artery will diminish the response. Care should be taken to ensure that a genuine baseline leg blood flow is obtained prior to performing a PLM vascular function assessment. ABSTRACT: The passive leg movement (PLM) assessment of vascular function utilizes the blood flow response in the common femoral artery (CFA). This response is primarily driven by vasodilation of the microvasculature downstream from the deep (DFA) and, to a lesser extent, the superficial (SFA) femoral artery, which facilitate blood flow to the upper and lower leg, respectively. However, the impact of baseline CFA blood flow on the PLM response is unknown. Therefore, to manipulate baseline CFA blood flow, PLM was performed with and without upper and lower leg cutaneous heating in 10 healthy subjects, with blood flow (ultrasound Doppler) and blood pressure (finometer) assessed. Baseline blood flow was significantly increased in the CFA (∼97%), DFA (∼109%) and SFA (∼78%) by upper leg heating. This increase in baseline CFA blood flow significantly attenuated the PLM-induced total blood flow in the DFA (∼62%), which was reflected by a significant fall in blood flow in the CFA (∼49%), but not in the SFA. Conversely, lower leg heating increased blood flow in the CFA (∼68%) and SFA (∼160%), but not in the DFA. Interestingly, this increase in baseline CFA blood flow only significantly attenuated the PLM-induced total blood flow in the SFA (∼60%), and not in the CFA or DFA. Thus, although an attenuated PLM response is not an obligatory consequence of an increase in baseline CFA blood flow, an increase in baseline blood flow through the DFA will diminish the PLM response. Therefore, care should be taken to ensure that a genuine baseline leg blood flow is obtained prior to performance of a PLM vascular function assessment.


Subject(s)
Hyperemia , Leg , Femoral Artery/physiology , Hemodynamics/physiology , Humans , Leg/blood supply , Movement/physiology , Regional Blood Flow/physiology
5.
Am J Physiol Heart Circ Physiol ; 320(2): H668-H678, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33306447

ABSTRACT

Passive leg movement (PLM) evokes a robust and predominantly nitric oxide (NO)-mediated increase in blood flow that declines with age and disease. Consequently, PLM is becoming increasingly accepted as a sensitive assessment of endothelium-mediated vascular function. However, a substantial PLM-induced hyperemic response is still evoked despite nitric oxide synthase (NOS) inhibition. Therefore, in nine young healthy men (25 ± 4 yr), this investigation aimed to determine whether the combination of two potent endothelium-dependent vasodilators, specifically prostaglandin (PG) and endothelium-derived hyperpolarizing factor (EDHF), account for the remaining hyperemic response to the two variants of PLM, PLM (60 movements) and single PLM (sPLM, 1 movement), when NOS is inhibited. The leg blood flow (LBF, Doppler ultrasound) response to PLM and sPLM following the intra-arterial infusion of NG-monomethyl-l-arginine (l-NMMA), to inhibit NOS, was compared to the combined inhibition of NOS, cyclooxygenase (COX), and cytochrome P-450 (CYP450) by l-NMMA, ketorolac tromethamine (KET), and fluconazole (FLUC), respectively. NOS inhibition attenuated the overall LBF [area under the curve (LBFAUC)] response to both PLM (control: 456 ± 194, l-NMMA: 168 ± 127 mL, P < 0.01) and sPLM (control: 185 ± 171, l-NMMA: 62 ± 31 mL, P = 0.03). The combined inhibition of NOS, COX, and CYP450 (i.e., l-NMMA+KET+FLUC) did not further attenuate the hyperemic responses to PLM (LBFAUC: 271 ± 97 mL, P > 0.05) or sPLM (LBFAUC: 72 ± 45 mL, P > 0.05). Therefore, PG and EDHF do not collectively contribute to the non-NOS-derived NO-mediated, endothelium-dependent hyperemic response to either PLM or sPLM in healthy young men. These findings add to the mounting evidence and understanding of the vasodilatory pathways assessed by the PLM and sPLM vascular function tests.NEW & NOTEWORTHY Passive leg movement (PLM) evokes a highly nitric oxide (NO)-mediated hyperemic response and may provide a novel evaluation of vascular function. The contributions of endothelium-dependent vasodilatory pathways, beyond NO and including prostaglandins and endothelium-derived hyperpolarizing factor, to the PLM-induced hyperemic response to PLM have not been evaluated. With intra-arterial drug infusion, the combined inhibition of nitric oxide synthase (NOS), cyclooxygenase, and cytochrome P-450 (CYP450) pathways did not further diminish the hyperemic response to PLM compared with NOS inhibition alone.


Subject(s)
Endothelium, Vascular/physiology , Hyperemia , Movement , Muscle Contraction , Muscle, Skeletal/blood supply , Nitric Oxide/metabolism , Vasodilation , Adult , Biological Factors/metabolism , Blood Flow Velocity , Cyclooxygenase Inhibitors/administration & dosage , Cytochrome P-450 Enzyme Inhibitors/administration & dosage , Endothelium, Vascular/metabolism , Healthy Volunteers , Humans , Infusions, Intra-Arterial , Leg , Male , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Prostaglandins/metabolism , Regional Blood Flow , Signal Transduction , Time Factors , Young Adult
6.
J Sports Med Phys Fitness ; 61(1): 37-43, 2021 01.
Article in English | MEDLINE | ID: mdl-33092320

ABSTRACT

BACKGROUND: Chronic supplementation with carnosine and ß-alanine (Carn-ßA) has been proposed to improve muscle contractility and reduce muscle fatigue mainly through an increase in intracellular pH buffering capacity. However, the acute ergogenic effects of Carn-ßA supplementation are poorly investigated. This study aimed at evaluating the acute effects of a single Carn-ßA supplementation on the cardiorespiratory and metabolic response during a ramp cycle-ergometric test. METHODS: This randomized, double-blind, placebo-controlled study, involved 10 healthy males (age: 22.2±1.9 years, body mass: 72.5±7.9 kg, stature: 1.72±0.08 m, Body Mass Index: 24.47±1.91 kg/m2, mean±standard deviation). All the participants performed two maximal incremental ramp tests on a cycle ergometer, with a prior randomized assumption of 2.5 g L-carnosine plus 2.5 g ß-alanine (Carn-ßA) or placebo (PLA). During exercise, gas exchange parameters were measured breath-by-breath, heart rate was monitored by electrocardiography and rate perceived exertion was determined on Borg scales. From the ramp test, peak cardiorespiratory and metabolic parameters and ventilatory thresholds (VT1 and VT2) were calculated offline. RESULTS: No differences between the experimental conditions emerged at peak exercise. However, despite acute Carn-ßA supplementation did not affect the single ventilatory thresholds, the compensated portion of the ramp test (i.e. the difference between VT2 and VT1) was significantly larger (P=0.043) in Carn-ßA. CONCLUSIONS: These findings demonstrate a positive effect of acute Carn-ßA supplementation on the compensated part of the exercise. This should be taken into account by nutritionists and athletes searching for nutritional supplements, when a quick effect based on an acute dose is required.


Subject(s)
Dietary Supplements , beta-Alanine/pharmacology , Adult , Carnosine/metabolism , Carnosine/pharmacology , Double-Blind Method , Exercise/physiology , Exercise Test , Heart Rate/drug effects , Humans , Male , Muscle Fatigue/drug effects , Muscle, Skeletal/physiology , Performance-Enhancing Substances/pharmacology , Respiration/drug effects , Young Adult , beta-Alanine/administration & dosage
7.
Exp Physiol ; 104(10): 1575-1584, 2019 10.
Article in English | MEDLINE | ID: mdl-31400019

ABSTRACT

NEW FINDINGS: What is the central question of this study? What is the distribution of the hyperaemic response to passive leg movement (PLM) in the common (CFA), deep (DFA) and superficial (SFA) femoral arteries? What is the impact of lower leg cuff-induced blood flow occlusion on this response? What is the main finding and its importance? Of the total blood that passed through the CFA, the majority was directed to the DFA and this was unaffected by cuffing. As a small fraction does pass through the SFA to the lower leg, cuffing during PLM should be considered to emphasize the thigh-specific hyperaemia. ABSTRACT: It has yet to be quantified how passive leg movement (PLM)-induced hyperaemia, an index of vascular function, is distributed beyond the common femoral artery (CFA), into the deep femoral (DFA) and the superficial femoral (SFA) arteries, which supply blood to the thigh and lower leg, respectively. Furthermore, the impact of cuffing the lower leg, a common practice, especially with drug infusions during PLM, on the hyperaemic response is, also, unknown. Therefore, PLM was performed with and without cuff-induced blood flow (BF) occlusion to the lower leg in 10 healthy subjects, with BF assessed by Doppler ultrasound. In terms of BF distribution during PLM, of the 380 ± 191 ml of blood that passed through the CFA, 69 ± 8% was directed to the DFA, while only 31 ± 8% passed through the SFA. Cuff occlusion of the lower leg significantly attenuated the PLM-induced hyperaemia through the SFA (∼30%), which was reflected by a fall in BF through the CFA (∼20%), but not through the DFA. Additionally, cuff occlusion significantly attenuated the PLM-induced peak change in BF (BFΔpeak ) in the SFA (324 ± 159 to 214 ± 114 ml min-1 ), which was, again, reflected in the CFA (1019 ± 438 to 833 ± 476 ml min-1 ), but not in the DFA. Thus, the PLM-induced hyperaemia predominantly passes through the DFA and this was unaltered by cuffing. However, as a small fraction of the PLM-induced hyperaemia does pass through the SFA to the lower leg, cuffing the lower leg during PLM should be considered to emphasize thigh-specific hyperaemia in the PLM assessment of vascular function.


Subject(s)
Blood Vessels/physiology , Leg/blood supply , Movement/physiology , Adult , Blood Vessels/diagnostic imaging , Female , Femoral Artery/diagnostic imaging , Femoral Artery/physiology , Health Status , Hemodynamics/physiology , Humans , Hyperemia/physiopathology , Leg/diagnostic imaging , Male , Microcirculation , Regional Blood Flow/physiology , Thigh/blood supply , Thigh/diagnostic imaging , Ultrasonography , Vasodilation/physiology
8.
Hypertension ; 74(1): 208-215, 2019 07.
Article in English | MEDLINE | ID: mdl-31055952

ABSTRACT

Early detection of coronary artery dysfunction is of paramount cardiovascular clinical importance, but a noninvasive assessment is lacking. Indeed, the brachial artery flow-mediated dilation test only weakly correlated with acetylcholine-induced coronary artery function ( r=0.36). However, brachial artery flow-mediated dilation methodologies have, over time, substantially improved. This study sought to determine if updates to this technique have improved the relationship with coronary artery function and the noninvasive indication of coronary artery dysfunction. Coronary artery and brachial artery function were assessed in 28 patients referred for cardiac catheterization (61±11 years). Coronary artery function was determined by the change in artery diameter with a 1.82 µg/min intracoronary acetylcholine infusion. Based on the change in vessel diameter, patients were characterized as having dysfunctional coronary arteries (>5% vasoconstriction) or relatively functional coronary arteries (<5% vasoconstriction). Brachial artery function was determined by flow-mediated dilation, adhering to current guidelines. The acetylcholine-induced change in vessel diameter was smaller in patients with dysfunctional compared with relatively functional coronary arteries (-11.8±4.6% versus 5.8±9.8%, P<0.001). Consistent with this, brachial artery flow-mediated dilation was attenuated in patients with dysfunctional compared with relatively functional coronaries (2.9±1.9% versus 6.2±4.2%, P=0.007). Brachial artery flow-mediated dilation was strongly correlated with the acetylcholine-induced change in coronary artery diameter ( r=0.77, P<0.0001) and was a strong indicator of coronary artery dysfunction (receiver operator characteristic=78%). The current data support that updates to the brachial artery flow-mediated dilation technique have strengthened the relationship with coronary artery function, which may now provide a clinically meaningful indication of coronary artery dysfunction.


Subject(s)
Acetylcholine/administration & dosage , Brachial Artery/drug effects , Cardiac Catheterization/methods , Coronary Artery Disease/diagnosis , Coronary Circulation/drug effects , Coronary Vessels/drug effects , Aged , Brachial Artery/physiopathology , Cohort Studies , Coronary Circulation/physiology , Coronary Vessels/physiopathology , Female , Humans , Infusions, Intralesional , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , ROC Curve , Risk Assessment , Vasoconstriction/drug effects , Vasoconstriction/physiology , Vasodilation/drug effects , Vasodilation/physiology
9.
Eur J Appl Physiol ; 118(11): 2339-2347, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30121883

ABSTRACT

PURPOSE: Badminton is characterized by bouts of high intensity interspersed by short recovery periods. Aerobic assessment via indirect calorimetry is impractical on court because of the encumbrance of portable metabolic devices. When the relationship between heart rate (HR) and pulmonary oxygen uptake [Formula: see text] [Formula: see text] is linear, HR monitoring can provide an indirect estimation of metabolic demands on court. However, owing to the intermittent nature of badminton, the [Formula: see text] relationship will differ from that obtained in the laboratory, making its use on court questionable. The aims of this study were to (i) assess cardiorespiratory and metabolic responses during on-court badminton rally simulations at different intensities and (ii) compare [Formula: see text] relationships obtained from laboratory and on-court measurements. METHODS: The study sample was seven professional badminton players (age 16.9 ± 2.1 years; body mass 62.8 ± 9.2 kg; stature 1.71 ± 0.09 m). [Formula: see text] HR, and other respiratory and metabolic parameters were assessed in the laboratory with an incremental intermittent Astrand-type test (IIAT) and on court during rally simulations at three different intensities. RESULTS: Cardiorespiratory parameters measured during the rallies reached 95% of maximal IIAT values. The [Formula: see text] slope and intercept differed in the on-court and the IIAT conditions (P = 0.012 and P = 0.008, respectively). CONCLUSIONS: The difference in [Formula: see text] regression lines between the IIAT and the on-court condition indicates that HR monitoring may not provide accurate data on the aerobic demands of specific on-court badminton tasks. HR monitoring should be preceded by an indirect calorimetry test on court to assess aerobic demands more precisely.


Subject(s)
Exercise/physiology , Heart Rate/physiology , Lung/physiology , Oxygen Consumption/physiology , Racquet Sports/physiology , Adolescent , Exercise Test , Female , Humans , Male , Young Adult
10.
J Strength Cond Res ; 32(4): 921-929, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29420390

ABSTRACT

Coratella, G, Beato, M, Milanese, C, Longo, S, Limonta, E, Rampichini, S, Cè, E, Bisconti, AV, Schena, F, and Esposito, F. Specific adaptations in performance and muscle architecture after weighted jump-squat vs. body mass squat jump training in recreational soccer players. J Strength Cond Res 32(4): 921-929, 2018-The aim of the present study was to compare the effects of weighted jump-squat training (WJST) vs. body mass squat jump training (BMSJT) on quadriceps' muscle architecture, lower-limb lean-mass (LM) and muscle strength, performance in change of direction (COD), and sprint and jump in recreational soccer players. Forty-eight healthy soccer players participated in an offseason randomized controlled trial. Before and after an 8-week training intervention, vastus lateralis pennation angle, fascicle length, muscle thickness, LM, squat 1RM, quadriceps and hamstrings isokinetic peak torque, agility T-test, 10-and 30-m sprints, and squat-jump (SJ) were measured. Although similar increases were observed in muscle thickness, fascicle length increased more in WJST (Effect size [ES] = 1.18, 0.82-1.54) than in BMSJT (ES = 0.54, 0.40-0.68), and pennation angle increased only in BMSJT (ES = 1.03, 0.78-1.29). Greater increases in LM were observed in WJST (ES = 0.44, 0.29-0.59) than in BMSJT (ES = 0.21, 0.07-0.37). The agility T-test (ES = 2.95, 2.72-3.18), 10-m (ES = 0.52, 0.22-0.82), and 30-m sprints (ES = 0.52, 0.23-0.81) improved only in WJST, whereas SJ improved in BMSJT (ES = 0.89, 0.43-1.35) more than in WJST (ES = 0.30, 0.03-0.58). Similar increases in squat 1RM and peak torque occurred in both groups. The greater inertia accumulated within the landing phase in WJST vs. BMSJT has increased the eccentric workload, leading to specific eccentric-like adaptations in muscle architecture. The selective improvements in COD in WJST may be related to the increased braking ability generated by the enhanced eccentric workload.


Subject(s)
Athletic Performance/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Resistance Training/methods , Soccer/physiology , Adaptation, Physiological , Adolescent , Adult , Body Composition , Hamstring Muscles/physiology , Humans , Male , Quadriceps Muscle/physiology , Running/physiology , Torque , Young Adult
11.
J Alzheimers Dis ; 53(4): 1631-40, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27540967

ABSTRACT

Sundowning syndrome (SDS) in patients with Alzheimer's disease (AD) is characterized by the intensification of behavioral disorders at sunset. Despite SDS etiology being unclear, a strong relationship between high cortisol levels and SDS has been reported. Aerobic exercise (AE) and cognitive training (CT) can reduce cortisol levels. However, whether SDS would benefit from AE and CT is still unknown. Therefore, the aim of this study was to investigate whether AE and CT treatments are effective in reducing SDS via downregulation of cortisol levels. The possible additive effects of combined AE+CT were also assessed. Eighty AD patients were randomly assigned to AE (n = 20), CT (n = 20), AE+CT (n = 20), and standard therapy (no treatment, NT; n = 20). Treatments were administered for 3 months, 5 days/week, 1 hour before sunset. Before and after treatments, salivary cortisol levels were sampled at 7, 11, 15, at sunset, and 20 (time of day). Blind assessment of behavioral disorders (neuropsychiatric inventory, NPI) and agitation (agitated behavior scale, ABS) were also performed. After interventions, cortisol levels were reduced in AE and AE+CT by ∼26%. In the same groups, NPI and ABS decreased by ∼50%. By contrast, cortisol and behavioral disorders were similar to baseline in CT and NT. Changes in NPI and ABS were significantly correlated with the reduction in cortisol levels. AE or AE+CT effects on SDS and cortisol levels and the lack of effect of CT alone indicate the effectiveness of an exercise-based treatment on SDS, suggesting a possible hypothalamic-pituitary-adrenal axis dysregulation underpinning SDS.


Subject(s)
Circadian Rhythm , Cognitive Behavioral Therapy/methods , Exercise Therapy/methods , Hydrocortisone/metabolism , Mental Disorders/rehabilitation , Saliva/chemistry , Aged , Alzheimer Disease/complications , Energy Metabolism , Female , Humans , Male , Mental Disorders/etiology , Mental Status Schedule , Neuropsychological Tests , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...