Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Braz J Med Biol Res ; 55: e12351, 2023.
Article in English | MEDLINE | ID: mdl-36629524

ABSTRACT

In cycling, there is a body of evidence that supports that an all-out start strategy is superior to an even-pacing strategy, but it is unknown whether an all-out start strategy is superior to a self-paced strategy. In the present study, we investigated the effects of three different pacing strategies on 4-km cycling time trial performance. After preliminary trials (familiarization trials and a baseline 4-km cycling time trial), in a randomized and counterbalanced order, twelve male cyclists (32.3±7.2 years old, maximum rate of O2 uptake (V̇O2peak) 4.3±0.4 L/min) completed: 1) a self-paced 4-km cycling time trial; 2) an all-out start (∼10 s), followed by maintenance of the average baseline trial power for the first km and self-paced cycling for the remaining trial (all-out+mean); and 3) an all-out start (∼10 s), followed by a power 5% above the average baseline trial power for the first km and self-paced cycling for the remaining trial (all-out+5%mean). Although there was a significant interaction between power and distance (P=0.001) with different power distribution profiles throughout the trial, there was no significant difference (P=0.99) between the three strategies for overall exercise performance (self-paced 379.8±13.9 s, all-out+mean 380.0±16.0 s, and all-out+5%mean 380.2±11.5 s). Oxygen uptake, rating of perceived effort, and heart rate were also similar across the pacing strategies. Different all-out start strategies did not confer additional benefits to performance compared to a self-paced strategy.


Subject(s)
Athletic Performance , Exercise , Adult , Humans , Male , Athletic Performance/physiology , Bicycling/physiology , Exercise/physiology , Exercise Test , Heart Rate/physiology , Oxygen Consumption/physiology
2.
Braz. j. med. biol. res ; 55: e12351, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420742

ABSTRACT

In cycling, there is a body of evidence that supports that an all-out start strategy is superior to an even-pacing strategy, but it is unknown whether an all-out start strategy is superior to a self-paced strategy. In the present study, we investigated the effects of three different pacing strategies on 4-km cycling time trial performance. After preliminary trials (familiarization trials and a baseline 4-km cycling time trial), in a randomized and counterbalanced order, twelve male cyclists (32.3±7.2 years old, maximum rate of O2 uptake (V̇O2peak) 4.3±0.4 L/min) completed: 1) a self-paced 4-km cycling time trial; 2) an all-out start (∼10 s), followed by maintenance of the average baseline trial power for the first km and self-paced cycling for the remaining trial (all-out+mean); and 3) an all-out start (∼10 s), followed by a power 5% above the average baseline trial power for the first km and self-paced cycling for the remaining trial (all-out+5%mean). Although there was a significant interaction between power and distance (P=0.001) with different power distribution profiles throughout the trial, there was no significant difference (P=0.99) between the three strategies for overall exercise performance (self-paced 379.8±13.9 s, all-out+mean 380.0±16.0 s, and all-out+5%mean 380.2±11.5 s). Oxygen uptake, rating of perceived effort, and heart rate were also similar across the pacing strategies. Different all-out start strategies did not confer additional benefits to performance compared to a self-paced strategy.

3.
Opt Express ; 28(2): 2010-2019, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-32121900

ABSTRACT

There is a world-wide push to create the next-generation all-optical transmission and switching technologies for exascale data centers. In this paper we focus on the switching fabrics. Many different types of 2D architectures are being explored including MEMS/waveguides and semiconductor optical amplifiers. However, these tend to suffer from high, path-dependent losses and crosstalk issues. The technologies with the best optical properties demonstrated to date in large fabrics (>100 ports) are 3D MEMS beam steering approaches. These have low average insertion losses and, equally important, a narrow loss distribution. However, 3D MEMS fabrics are generally dismissed from serious consideration for this application because of their slow switching speeds (∼few milliseconds) and high costs ($100/port). In this paper we show how novel feedforward open loop controls can solve both problems by improving MEMS switching speeds by two orders of magnitude and costs by a factor of three. With these improvements in hand, we believe 3D MEMS fabrics can become the technology of choice for data centers.

4.
Braz J Med Biol Res ; 52(12): e9169, 2019.
Article in English | MEDLINE | ID: mdl-31826183

ABSTRACT

We investigated the effect of caffeine ingestion combined with a 2-wk sprint interval training (SIT) on training-induced reductions in body adiposity. Twenty physically-active men ingested either 5 mg/kg of cellulose as a placebo (PLA, n=10) or 5 mg/kg of caffeine (CAF, n=10) 60 min before each SIT session (13×30 s sprint/15 s of rest). Body mass and skinfold thickness were measured pre- and post-training. Energy expenditure was measured at rest, during exercise, and 45 min after exercise in the first SIT session. Body fat was similar between PLA and CAF groups at pre-training (P>0.05). However, there was a significant decrease in body fat after training in the CAF group (-5.9±4.2%, P<0.05) but not in PLA (1.5±8.0%, P>0.05). There was no difference in energy expenditure at rest and during exercise between PLA and CAF groups (P>0.05), but the post-exercise energy expenditure was 18.3±21.4% greater in the CAF than in the PLA group (P<0.05). In conclusion, caffeine ingestion before SIT sessions induced a body fat loss that may be associated with higher post-exercise energy expenditure.


Subject(s)
Adipose Tissue/drug effects , Caffeine/administration & dosage , Energy Metabolism/drug effects , High-Intensity Interval Training , Oxygen Consumption/drug effects , Adult , Double-Blind Method , Humans , Male , Young Adult
5.
Sci Rep ; 9(1): 12688, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31481717

ABSTRACT

Research in α-actinin-3 knockout mice suggests a novel role for α-actinin-3 as a mediator of cell signalling. We took advantage of naturally-occurring human "knockouts" (lacking α-actinin-3 protein) to investigate the consequences of α-actinin-3 deficiency on exercise-induced changes in mitochondrial-related genes and proteins, as well as endurance training adaptations. At baseline, we observed a compensatory increase of α-actinin-2 protein in ACTN3 XX (α-actinin-3 deficient; n = 18) vs ACTN3 RR (expressing α-actinin-3; n = 19) participants but no differences between genotypes for markers of aerobic fitness or mitochondrial content and function. There was a main effect of genotype, without an interaction, for RCAN1-4 protein content (a marker of calcineurin activity). However, there was no effect of genotype on exercise-induced expression of genes associated with mitochondrial biogenesis, nor post-training physiological changes. In contrast to results in mice, loss of α-actinin-3 is not associated with higher baseline endurance-related phenotypes, or greater adaptations to endurance exercise training in humans.


Subject(s)
Actinin/metabolism , Exercise , Mitochondria/metabolism , Actinin/genetics , Carrier Proteins/metabolism , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , DNA-Binding Proteins/metabolism , Endurance Training , Gene Expression , Genotype , Humans , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phenotype , Polymorphism, Genetic
6.
Opt Express ; 27(11): 15318-15326, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31163729

ABSTRACT

Beam steering is essential for a variety of optical applications such as communication, LIDAR, and imaging. Microelectromechanical system (MEMS) mirrors are an effective method of achieving modest speeds and angular range at low cost. Typically there are a number of tradeoffs considered when designing a tip-tilt mirror, such as tilt angle and speed. For example, many mirrors are designed to scan at their resonant frequency to achieve large angles. This is effective for a scanning mode; however, this makes the device slow and ineffective as a galvo (quasi-static). Here, we present a magnetic MEMS mirror with extreme quasi-static mechanical tilt angles of ±60° (±120° optical) about two rotation axes. This micromirror enables full hemispheric optical coverage without compromising speed; settling in 4.5 ms using advanced drive techniques. This mirror will enable new applications for MEMS micromirrors previously thought impossible due to their limited angular range and speed.

7.
Braz. j. med. biol. res ; 52(12): e9169, 2019. tab, graf
Article in English | LILACS | ID: biblio-1055475

ABSTRACT

We investigated the effect of caffeine ingestion combined with a 2-wk sprint interval training (SIT) on training-induced reductions in body adiposity. Twenty physically-active men ingested either 5 mg/kg of cellulose as a placebo (PLA, n=10) or 5 mg/kg of caffeine (CAF, n=10) 60 min before each SIT session (13×30 s sprint/15 s of rest). Body mass and skinfold thickness were measured pre- and post-training. Energy expenditure was measured at rest, during exercise, and 45 min after exercise in the first SIT session. Body fat was similar between PLA and CAF groups at pre-training (P>0.05). However, there was a significant decrease in body fat after training in the CAF group (−5.9±4.2%, P<0.05) but not in PLA (1.5±8.0%, P>0.05). There was no difference in energy expenditure at rest and during exercise between PLA and CAF groups (P>0.05), but the post-exercise energy expenditure was 18.3±21.4% greater in the CAF than in the PLA group (P<0.05). In conclusion, caffeine ingestion before SIT sessions induced a body fat loss that may be associated with higher post-exercise energy expenditure.


Subject(s)
Humans , Male , Adult , Young Adult , Oxygen Consumption/drug effects , Caffeine/administration & dosage , Adipose Tissue/drug effects , Energy Metabolism/drug effects , High-Intensity Interval Training , Double-Blind Method
8.
Acta Physiol (Oxf) ; 223(2): e13045, 2018 06.
Article in English | MEDLINE | ID: mdl-29383885

ABSTRACT

AIM: This study explored the effects of blood flow restriction (BFR) on mRNA responses of PGC-1α (total, 1α1, and 1α4) and Na+ ,K+ -ATPase isoforms (NKA; α1-3 , ß1-3 , and FXYD1) to an interval running session and determined whether these effects were related to increased oxidative stress, hypoxia, and fibre type-specific AMPK and CaMKII signalling, in human skeletal muscle. METHODS: In a randomized, crossover fashion, 8 healthy men (26 ± 5 year and 57.4 ± 6.3 mL kg-1  min-1 ) completed 3 exercise sessions: without (CON) or with blood flow restriction (BFR), or in systemic hypoxia (HYP, ~3250 m). A muscle sample was collected before (Pre) and after exercise (+0 hour, +3 hours) to quantify mRNA, indicators of oxidative stress (HSP27 protein in type I and II fibres, and catalase and HSP70 mRNA), metabolites, and α-AMPK Thr172 /α-AMPK, ACC Ser221 /ACC, CaMKII Thr287 /CaMKII, and PLBSer16 /PLB ratios in type I and II fibres. RESULTS: Muscle hypoxia (assessed by near-infrared spectroscopy) was matched between BFR and HYP, which was higher than CON (~90% vs ~70%; P < .05). The mRNA levels of FXYD1 and PGC-1α isoforms (1α1 and 1α4) increased in BFR only (P < .05) and were associated with increases in indicators of oxidative stress and type I fibre ACC Ser221 /ACC ratio, but dissociated from muscle hypoxia, lactate, and CaMKII signalling. CONCLUSION: Blood flow restriction augmented exercise-induced increases in muscle FXYD1 and PGC-1α mRNA in men. This effect was related to increased oxidative stress and fibre type-dependent AMPK signalling, but unrelated to the severity of muscle hypoxia, lactate accumulation, and modulation of fibre type-specific CaMKII signalling.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Membrane Proteins/genetics , Muscle, Skeletal/blood supply , Oxidative Stress/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Phosphoproteins/genetics , Adult , Exercise/physiology , Humans , Male , Muscle, Skeletal/metabolism , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Running , Transcription Factors/metabolism , Young Adult
9.
Opt Express ; 25(17): 20274-20285, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-29041710

ABSTRACT

MEMS mirrors are currently used in many applications to steer beams of light. An area of continued research is developing mirrors with varifocal capability that allows the beam to be shaped and focused. In this work, we study the varifocal capability of a 380 µm diameter, thermally actuated MEMS mirror with a ± 40° tip-tilt angle and a radius of curvature between -0.48 mm to 20.5 mm. Light is coupled to the mirror via a single mode optical fiber, similar to an indoor optical wireless communication architecture. The performance of the mirror is characterized with respect to (1) the profile of the reflected beam as the mirror deforms and (2) the mirror's impact when integrated into an optical communication system. We found that the mirror can focus light to a beam with a 0.18° half-angle divergence. Additionally, the ability to change the shape of fiberized light from a wide to narrow beam provides an unmatched level of dynamic control and significantly improves the bit error rate in an optical communication system.

10.
Braz J Med Biol Res ; 50(12): e6335, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29069224

ABSTRACT

This study analyzed the influence of a 4-week high-intensity interval training on the pacing strategy adopted by runners during a 5-km running trial. Sixteen male recreational long-distance runners were randomly assigned to a control group (CON, n=8) or a high-intensity interval training group (HIIT, n=8). The HIIT group performed high-intensity interval-training twice per week, while the CON group maintained their regular training program. Before and after the training period, the runners performed an incremental exercise test to exhaustion to measure the onset of blood lactate accumulation, maximal oxygen uptake (VO2max), and peak treadmill speed (PTS). A submaximal constant-speed test to measure the running economy (RE) and a 5-km running trial on an outdoor track to establish pacing strategy and performance were also done. During the 5-km running trial, the rating of perceived exertion (RPE) and time to cover the 5-km trial (T5) were registered. After the training period, there were significant improvements in the HIIT group of ∼7 and 5% for RE (P=0.012) and PTS (P=0.019), respectively. There was no significant difference between the groups for VO2max (P=0.495) or onset of blood lactate accumulation (P=0.101). No difference was found in the parameters measured during the 5-km trial before the training period between HIIT and CON (P>0.05). These findings suggest that 4 weeks of HIIT can improve some traditional physiological variables related to endurance performance (RE and PTS), but it does not alter the perception of effort, pacing strategy, or overall performance during a 5-km running trial.


Subject(s)
High-Intensity Interval Training/methods , Physical Endurance/physiology , Physical Exertion/physiology , Running/physiology , Adult , Exercise Test/methods , Heart Rate/physiology , Humans , Lactic Acid/blood , Male , Oxygen Consumption/physiology , Reference Values , Reproducibility of Results , Statistics, Nonparametric , Time Factors , Young Adult
11.
Scand J Med Sci Sports ; 25 Suppl 1: 79-89, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25943658

ABSTRACT

Training and competition in major track-and-field events, and for many team or racquet sports, often require the completion of maximal sprints in hot (>30 °C) ambient conditions. Enhanced short-term (<30 s) power output or single-sprint performance, resulting from transient heat exposure (muscle temperature rise), can be attributed to improved muscle contractility. Under heat stress, elevations in skin/core temperatures are associated with increased cardiovascular and metabolic loads in addition to decreasing voluntary muscle activation; there is also compelling evidence to suggest that large performance decrements occur when repeated-sprint exercise (consisting of brief recovery periods between sprints, usually <60 s) is performed in hot compared with cool conditions. Conversely, poorer intermittent-sprint performance (recovery periods long enough to allow near complete recovery, usually 60-300 s) in hotter conditions is solely observed when exercise induces marked hyperthermia (core temperature >39 °C). Here we also discuss strategies (heat acclimatization, precooling, hydration strategies) employed by "sprint" athletes to mitigate the negative influence of higher environmental temperatures.


Subject(s)
Athletic Performance/physiology , Heat Stress Disorders/etiology , Hot Temperature/adverse effects , Running/physiology , Acclimatization , Body Temperature Regulation , Drinking , Heat Stress Disorders/physiopathology , Heat Stress Disorders/prevention & control , Humans
12.
Opt Express ; 23(7): 9555-66, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25968784

ABSTRACT

MEMS micromirrors have proven to be very important optical devices with applications ranging from steerable mirrors for switches and cross-connects to spatial light modulators for correcting optical distortions. Usually beam steering and focusing are done with different MEMS devices and tilt angles in excess of 10 degrees are seldom obtained. Here we describe a single MEMS device that combines tip/tilt, piston mode and varifocal capability into a single, low cost device with very large tilt angles. Our device consists of a 400 micron diameter mirror driven with thermal bimorphs. We have demonstrated deflection angles of ± 40 degrees along both axes, a tunable focal length which varies between -0.48 mm to + 20.5 mm and a piston mode range of 300 microns - four separately controllable degrees of freedom in a single device. Potential applications range from smart lighting to optical switches and devices for telecom systems.

13.
Scand J Med Sci Sports ; 25(5): e432-41, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25556533

ABSTRACT

This study aimed to compare the magnitude and etiology of neuromuscular fatigue during maximal repeated contractions performed in two contraction modes (concentric vs isometric) and at two contraction velocities (30/s vs 240°/s). Eleven lower limb-trained males performed 20 sets of maximal contractions at three different angular velocities: 0°/s (KE0), 30/s (KE30), and 240°/s (KE240). Cumulated work, number of contraction, duty cycle, and contraction time were controlled. Torque, superimposed and resting twitches, as well as gas exchange, were analyzed. Increasing contraction velocity was associated with greater maximal voluntary torque loss (KE0: -9.8 ± 3.9%; KE30: -16.4 ± 8.5%; KE240: -32.6 ± 6.3%; P < 0.05). Interestingly, the torque decrease was similar for a given cumulated work. Compared with KE0, KE240 generated a greater evoked torque loss (Db100: -24.3 ± 5.3% vs -5.9 ± 6.9%; P < 0.001), a higher O2 consumption (23.7 ± 6.4 mL/min/kg vs 15.7 ± 3.8 mL/min/kg; P < 0.001), but a lower voluntary activation (VA) loss (-4.3 ± 1.6% vs -11.2 ± 4.9%; P < 0.001). The neuromuscular perturbations were intermediate for KE30 (Db100: -10.0 ± 6.8%; VA: -7.2 ± 2.8%). Although the amount of mechanical work cumulated strongly determined the magnitude of torque decrease, the contraction velocity and mode influenced the origin of the neuromuscular fatigue. The metabolic stress and peripheral fatigue increased but reduction of VA is attenuated when the contraction velocity increased from 0°/s to 240°/s.


Subject(s)
Isometric Contraction/physiology , Motor Neurons/physiology , Muscle Fatigue/physiology , Physical Exertion/physiology , Quadriceps Muscle/physiopathology , Electric Stimulation , Electromyography , Femoral Nerve/physiology , Humans , Male , Neuromuscular Junction/physiopathology , Oxygen Consumption , Pulmonary Gas Exchange , Time Factors , Torque , Young Adult
14.
J Appl Physiol (1985) ; 118(6): 699-706, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25614596

ABSTRACT

The Na(+)-K(+)-ATPase (NKA) plays a key role in muscle excitability, but little is known in human skeletal muscle about fiber-type-specific differences in NKA isoform expression or adaptability. A vastus lateralis muscle biopsy was taken in 17 healthy young adults to contrast NKA isoform protein relative abundance between type I and IIa fibers. We further investigated muscle fiber-type-specific NKA adaptability in eight of these adults following 4-wk repeated-sprint exercise (RSE) training, comprising three sets of 5 × 4-s sprints, 3 days/wk. Single fibers were separated, and myosin heavy chain (I and IIa) and NKA (α1-3 and ß1-3) isoform abundance were determined via Western blotting. All six NKA isoforms were expressed in both type I and IIa fibers. No differences between fiber types were found for α1-, α2-, α3-, ß1-, or ß3-isoform abundances. The NKA ß2-isoform was 27% more abundant in type IIa than type I fibers (P < 0.05), with no other fiber-type-specific trends evident. RSE training increased ß1 in type IIa fibers (pretraining 0.70 ± 0.25, posttraining 0.84 ± 0.24 arbitrary units, 42%, P < 0.05). No training effects were found for other NKA isoforms. Thus human skeletal muscle expresses all six NKA isoforms and not in a fiber-type-specific manner; this points to their different functional roles in skeletal muscle cells. Detection of elevated NKA ß1 after RSE training demonstrates the sensitivity of the single-fiber Western blotting technique for fiber-type-specific intervention effects.


Subject(s)
Adaptation, Physiological/physiology , Exercise/physiology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Protein Isoforms/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Adult , Female , Humans , Male , Myosin Heavy Chains/metabolism
15.
Acta Physiol (Oxf) ; 213(1): 39-59, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25345837

ABSTRACT

The response to exercise training (trainability) has been shown to have a strong heritable component. There is growing evidence suggesting that traits such as trainability do not only depend on the genetic code, but also on epigenetic signals. Epigenetic signals play an important role in the modulation of gene expression, through mechanisms such as DNA methylation and histone modifications. There is an emerging evidence to show that physical activity influences DNA methylation in humans. The present review aims to summarize current knowledge on the link between DNA methylation and physical activity in humans. We have critically reviewed the literature and only papers focused on physical activity and its influence on DNA methylation status were included; a total of 25 papers were selected. We concluded that both acute and chronic exercises significantly impact DNA methylation, in a highly tissue- and gene-specific manner. This review also provides insights into the molecular mechanisms of exercise-induced DNA methylation changes, and recommendations for future research.


Subject(s)
DNA Methylation/physiology , Exercise Therapy , Exercise/physiology , Gene Expression Regulation/physiology , Gene Expression/physiology , Animals , Humans , Phenotype
16.
Scand J Med Sci Sports ; 24(6): e483-490, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24646366

ABSTRACT

Three studies were conducted to validate the Training Distress Scale (TDS), a 19-item measure of training-related distress and performance readiness. Study 1 was a randomized, controlled laboratory experiment in which a treatment group undertook daily interval training until a 25% decrement occurred in time-to-fatigue performance. Comparisons with a control group showed that TDS scores increased over time within the treatment group but not in the control group. Study 2 was a randomized, controlled field investigation in which performance capabilities and TDS responses were compared across a high-intensity interval training group and a control group that continued normal training. Running performance decreased significantly in the training group but not in the control group, and scores on the TDS mirrored those changes in performance capabilities. Study 3 examined the relationship between TDS scores obtained over a 2-week period before major swimming competitions and subsequent performance in those competitions. Significantly, better performance was observed for swimmers with low TDS scores compared with those with moderate or high TDS scores. These findings provide both laboratory and field evidence for the validity of the TDS as a measure of short-term training distress and performance readiness.


Subject(s)
Athletic Performance/psychology , Physical Conditioning, Human/psychology , Self Report , Stress, Psychological/diagnosis , Adolescent , Adult , Appetite , Attention , Child , Fatigue/psychology , Female , Humans , Male , Myalgia/psychology , Physical Exertion , Prospective Studies , Reproducibility of Results , Running/physiology , Running/psychology , Sleep Wake Disorders/psychology , Swimming/physiology , Swimming/psychology , Young Adult
17.
Eur J Appl Physiol ; 113(2): 359-69, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22743981

ABSTRACT

This study investigated the effect of hot conditions on repeated sprint cycling performance and post-exercise alterations in isometric knee extension function. Twelve physically active participants performed 10 × 6-s "all-out" sprints on a cycle ergometer (recovery = 30 s), followed 6 min later by 5 × 6-s sprints (recovery = 30 s) in either a neutral (24 °C/30 %rH) or a hot (35 °C/40 %rH) environment. Neuromuscular tests including voluntary and electrically evoked isometric contractions of the knee extensors were performed before and after exercise. Average core temperature during exercise was higher (38.0 ± 0.1 vs. 37.7 ± 0.1 °C, respectively; P < 0.05) in hot versus neutral environments. Peak power output decreased (-17.9 % from sprint 1 to sprint 10 and -17.0 % from sprint 11 to sprint 15; P < 0.001) across repetitions. Average peak power output during the first ten sprints was higher (+3.1 %; P < 0.01) in the hot ambient temperature condition. Maximal strength (-12 %) and rate of force development (-15 to -26 %, 30-200 ms from the onset of contraction) decreased (P < 0.001) during brief contractions after exercise, irrespectively of the ambient temperature. During brief maximal contractions, changes in voluntary activation (~80 %) were not affected by exercise or temperature. Voluntary activation declined (P < 0.01) during the sustained contraction, with these reductions being more pronounced (P < 0.05) after exercise but not affected by the ambient temperature. Resting twitch amplitude declined (P < 0.001) by ~42 %, independently of the ambient temperature. In conclusion, heat exposure has no effect on the pattern and the extent of isometric knee extensor fatigue following repeated cycling sprints in the absence of hyperthermia.


Subject(s)
Bicycling/physiology , Body Temperature/physiology , Hyperthermia, Induced/methods , Isometric Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Neuromuscular Junction/physiology , Adult , Hot Temperature , Humans , Male , Physical Exertion/physiology , Synaptic Transmission/physiology
18.
Br J Sports Med ; 39(12): 960-4; discussion 964, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16306507

ABSTRACT

OBJECTIVES: To investigate the effects of different swimming intensities on subsequent cycling and overall triathlon performance. METHODS: Nine highly trained, male triathletes completed five separate laboratory sessions comprising one graded exercise test, a swim time trial (STT), and three sprint distance triathlons (TRI). The swimming velocities of the three TRI sessions were 80-85% (S80), 90-95% (S90), and 98-102% (S100) of the STT velocity. Subsequent cycling and running were performed at a perceived maximal intensity. Swimming stroke mechanics were measured during the swim. Plasma lactate concentration and ratings of perceived exertion were recorded at the conclusion of the swim and over the course of subsequent cycling and running. Oxygen consumption was recorded during the cycle. RESULTS: The S80 and S90 cycle times were faster than the S100 cycle time (p<0.05). The overall triathlon time of S80 was faster than that of S100 (p<0.05). The S100 swim was characterised by a greater stroke rate than S80 and S90 (p<0.05) and a greater plasma lactate concentration than S80 (p<0.01). CONCLUSION: A swimming intensity below that of a time trial effort significantly improves subsequent cycling and overall triathlon performance.


Subject(s)
Bicycling/physiology , Running/physiology , Swimming/physiology , Adult , Exercise Test/methods , Humans , Lactic Acid/blood , Male , Oxygen Consumption/physiology , Physical Endurance/physiology , Task Performance and Analysis
19.
Phys Rev Lett ; 87(21): 211801, 2001 Nov 19.
Article in English | MEDLINE | ID: mdl-11736330

ABSTRACT

The Casimir force between uncharged metallic surfaces originates from quantum-mechanical zero-point fluctuations of the electromagnetic field. We demonstrate that this quantum electrodynamical effect has a profound influence on the oscillatory behavior of microstructures when surfaces are in close proximity (< or =100 nm). Frequency shifts, hysteretic behavior, and bistability caused by the Casimir force are observed in the frequency response of a periodically driven micromachined torsional oscillator.

20.
Science ; 291(5510): 1941-4, 2001 Mar 09.
Article in English | MEDLINE | ID: mdl-11239149

ABSTRACT

The Casimir force is the attraction between uncharged metallic surfaces as a result of quantum mechanical vacuum fluctuations of the electromagnetic field. We demonstrate the Casimir effect in microelectromechanical systems using a micromachined torsional device. Attraction between a polysilicon plate and a spherical metallic surface results in a torque that rotates the plate about two thin torsional rods. The dependence of the rotation angle on the separation between the surfaces is in agreement with calculations of the Casimir force. Our results show that quantum electrodynamical effects play a significant role in such microelectromechanical systems when the separation between components is in the nanometer range.

SELECTION OF CITATIONS
SEARCH DETAIL
...