Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxid Redox Signal ; 20(15): 2361-71, 2014 May 20.
Article in English | MEDLINE | ID: mdl-23758052

ABSTRACT

AIMS: The goal of this study was to use two manganese (Mn)-based superoxide dismutase (SOD) mimics to test the hypothesis that reactive oxygen species contribute to both acute and long-term outcomes in a galactose-1P uridylyltransferase (GALT)-null Drosophila melanogaster model of classic galactosemia. RESULTS: We tested the impact of each of two Mn porphyrin SOD mimics, MnTnBuOE-2-PyP(5+), and MnTE-2-PyP(5+), (i) on survival of GALT-null Drosophila larvae reared in the presence versus absence of dietary galactose and (ii) on the severity of a long-term movement defect in GALT-null adult flies. Both SOD mimics conferred a significant survival benefit to GALT-null larvae exposed to galactose but not to controls or to GALT-null larvae reared in the absence of galactose. One mimic, MnTE-2-PyP(5+), also largely rescued a galactose-independent long-term movement defect otherwise seen in adult GALT-null flies. The survival benefit of both SOD mimics occurred despite continued accumulation of elevated galactose-1P in the treated animals, and studies of thiolated proteins demonstrated that in both the presence and absence of dietary galactose MnTE-2-PyP(5+) largely prevented the elevated protein oxidative damage otherwise seen in GALT-null animals relative to controls. INNOVATION AND CONCLUSIONS: Our results confirm oxidative stress as a mediator of acute galactose sensitivity in GALT-null Drosophila larvae and demonstrate for the first time that oxidative stress may also contribute to galactose-independent adult outcomes in GALT deficiency. Finally, our results demonstrate for the first time that both MnTnBuOE-2-PyP(5+) and MnTE-2-PyP(5+) are bioavailable and effective when administered through an oral route in a D. melanogaster model of classic galactosemia.


Subject(s)
Galactosemias/metabolism , Molecular Mimicry , Superoxide Dismutase/metabolism , Animals , Cysteine/blood , Cysteine/metabolism , Disease Models, Animal , Drosophila melanogaster , Galactose/metabolism , Galactosemias/drug therapy , Galactosemias/genetics , Galactosemias/mortality , Glutathione/blood , Glutathione/metabolism , Male , Metabolic Networks and Pathways , Metalloporphyrins/pharmacokinetics , Metalloporphyrins/pharmacology , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Superoxide Dismutase/chemistry , Superoxide Dismutase/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...