Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Diatom Res ; 36(4): 291-304, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35958044

ABSTRACT

Consistent identification of diatoms is a prerequisite for studying their ecology, biogeography, and successful application as environmental indicators. However, taxonomic consistency among observers has been difficult to achieve, because taxonomic information is scattered across numerous literature sources, presenting challenges to the diatomist. First, literature is often inaccessible because of cost, or its location in journals that are not widely circulated. Second, taxonomic revisions of diatoms are taking place faster than floras can be updated. Finally, taxonomic information is often contradictory across literature sources. These issues can be addressed by developing a content creation community dedicated to making taxonomic, ecological, and image-based data freely available for diatom researchers. Diatoms.org represents such a content curation community, providing open, online access to a vast amount of recent and historical information on North American diatom taxonomy and ecology. The content curation community aggregates existing taxonomic information, creates new content, and provides feedback in the form of corrections and notice of literature with nomenclatural changes. The website not only addresses the needs of experienced diatom scientists for consistent identification, but is also designed to meet users at their level of expertise, including engaging the lay public in the importance of diatom science. The website now contains over 1000 species pages contributed by over 100 content contributors, from students to established scientists. The project began with the intent to provide accurate information on diatom identification, ecology, and distribution using an approach that incorporates engaging design, user feedback, and advanced data access technology. In retrospect, the project that began as an "extended electronic book" has emerged not only as a means to support taxonomists, but for practitioners to communicate and collaborate, expanding the size of and benefits to the content curation community. In this paper, we outline the development of diatoms.org, document key elements of the project, examine ongoing challenges, and consider the unexpected emergent properties, including the value of diatoms.org as a source of data. Ultimately, if the field of diatom taxonomy, ecology, and biodiversity is to be relevant, a new generation of taxonomists needs to be trained and employed using new tools. We propose that diatoms.org is in a key position to serve as a hub of training and continuity for the study of diatom biodiversity and aquatic conditions.

2.
Glob Chang Biol ; 28(19): 5755-5767, 2022 10.
Article in English | MEDLINE | ID: mdl-35785458

ABSTRACT

Despite the potential of standing genetic variation to rescue communities and shape future adaptation to climate change, high levels of uncertainty are associated with intraspecific trait variation in marine phytoplankton. Recent model intercomparisons have pointed to an urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change, including Southern Ocean (SO) surface waters, which are among the most rapidly warming habitats on Earth. Because SO phytoplankton growth responses to warming sea surface temperature (SST) are poorly constrained, we developed a high-throughput growth assay to simultaneously examine inter- and intra-specific thermal trait variation in a group of 43 taxonomically diverse and biogeochemically important SO phytoplankton called diatoms. We found significant differential growth performance among species across thermal traits, including optimum and maximum tolerated growth temperatures. Within species, coefficients of variation ranged from 3% to 48% among strains for those same key thermal traits. Using SO SST projections for 2100, we predicted biogeographic ranges that differed by up to 97% between the least and most tolerant strains for each species, illustrating the role that strain-specific differences in temperature response can play in shaping predictions of future phytoplankton biogeography. Our findings revealed the presence and scale of thermal trait variation in SO phytoplankton and suggest these communities may already harbour the thermal trait diversity required to withstand projected 21st-century SST change in the SO even under severe climate forcing scenarios.


Subject(s)
Diatoms , Phytoplankton , Climate Change , Diatoms/physiology , Ecosystem , Oceans and Seas , Phytoplankton/physiology , Temperature
3.
Limnol Oceanogr Methods ; 18(6): 271-279, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-34025297

ABSTRACT

Inconsistency in taxonomic identification and analyst bias impede the effective use of diatom data in regional and national stream and lake surveys. In this study, we evaluated the effect of existing protocols and a revised protocol on the precision of diatom species counts. The revised protocol adjusts five elements of sample preparation, taxon identification and enumeration, and quality control (QC) samples. We used six independent datasets to assess the effect of the adjustments on analytical outcomes. The first dataset was produced by five analysts from three laboratories following a standard protocol (Charles et al. 2002). The remaining datasets were produced by 2-3 analysts in 1-3 laboratories following a revised protocol. The revised protocol included the following modifications: 1) use of Battarbee settling chambers to prepare coverslips, 2) development of coordinated pre-count voucher floras based on morphological operational taxonomic units (mOTUs), 3) random assignment of samples to analysts, 4) post-count identification and documentation of taxa, and 5) increased QC samples. The revised protocol reduced taxonomic bias, as measured by reduction in analyst signal, and improved similarity among QC samples. Reduced taxonomic bias improves the performance of biological assessments, facilitates transparency across studies, and refines estimates of diatom species distributions.

4.
Ecol Indic ; 102: 166-174, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-32802000

ABSTRACT

Diatom data have been collected in large-scale biological assessments in the United States, such as the U.S. Environmental Protection Agency's National Rivers and Streams Assessment (NRSA). However, the effectiveness of diatoms as indicators may suffer if inconsistent taxon identifications across different analysts obscure the relationships between assemblage composition and environmental variables. To reduce these inconsistencies, we harmonized the 2008-2009 NRSA data from nine analysts by updating names to current synonyms and by statistically identifying taxa with high analyst signal (taxa with more variation in relative abundance explained by the analyst factor, relative to environmental variables). We then screened a subset of samples with QA/QC data and combined taxa with mismatching identifications by the primary and secondary analysts. When these combined "slash groups" did not reduce analyst signal, we elevated taxa to the genus level or omitted taxa in difficult species complexes. We examined the variation explained by analyst in the original and revised datasets. Further, we examined how revising the datasets to reduce analyst signal can reduce inconsistency, thereby uncovering the variation in assemblage composition explained by total phosphorus (TP), an environmental variable of high priority for water managers. To produce a revised dataset with the greatest taxonomic consistency, we ultimately made 124 slash groups, omitted 7 taxa in the small naviculoid (e.g., Sellaphora atomoides) species complex, and elevated Nitzschia, Diploneis, and Tryblionella taxa to the genus level. Relative to the original dataset, the revised dataset had more overlap among samples grouped by analyst in ordination space, less variation explained by the analyst factor, and more than double the variation in assemblage composition explained by TP. Elevating all taxa to the genus level did not eliminate analyst signal completely, and analyst remained the most important predictor for the genera Sellaphora, Mayamaea, and Psammodictyon, indicating that these taxa present the greatest obstacle to consistent identification in this dataset. Although our process did not completely remove analyst signal, this work provides a method to minimize analyst signal and improve detection of diatom association with TP in large datasets involving multiple analysts. Examination of variation in assemblage data explained by analyst and taxonomic harmonization may be necessary steps for improving data quality and the utility of diatoms as indicators of environmental variables.

5.
J Phycol ; 53(3): 652-663, 2017 06.
Article in English | MEDLINE | ID: mdl-28267206

ABSTRACT

Didymosphenia geminata has received a great deal of attention in the last 25 years, and considerable effort has gone into determining the origin, ecological impact, and economic consequences of its invasive behavior. While environmental conditions are a controlling influence in distribution, the extreme success of the species may be tied to its basic biology and life history. Little is known, however, about population dynamics, size restoration and reproduction of D. geminata. The objective of this study was to determine the temporal patterns in cell size frequency, size restoration strategy, and synchronization of life cycles between populations in close proximity. We implemented FlowCam technology to measure the length of more than 100,000 D. geminata cells from two sites in South Boulder Creek, Colorado over 1 year. We applied finite mixture modeling to uncover temporal patterns in size distribution. Our results show that collections of D. geminata exhibited a complex, multimodal size distribution, almost always containing four overlapping age cohorts. We failed to observe direct visual evidence of the sexual phase. Multiple abrupt and directional shifts in size distribution, however, were documented providing conclusive evidence of cell size restoration. Lastly, nodules in close proximity were asynchronous with respect to size frequency profiles and size diminution, highlighting the relevance of spatial heterogeneity in in situ diatom size dynamics. This study is the first to document the complexity of diatom cell size distribution in a lotic system, size restoration in D. geminata, and the variability in rates of size reduction at microhabitat spatial scales.


Subject(s)
Diatoms/growth & development , Life Cycle Stages , Life History Traits , Colorado , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...