Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 20(14): 2964-2980, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35333269

ABSTRACT

Many children suffering from autism spectrum disorder (ASD) experience gastrointestinal (GI) conditions. Enterocloster bolteae has been regularly detected in the stool of individuals suffering from GI symptoms and autism. Literature has suggested that E. bolteae strains WAL 16351 and WAL 14578 produce an immunogenic capsular polysaccharide (CPS) comprised of disaccharide repeating units: α-D-Man-(1 → 4)-ß-Rha-(1 → 3) that could be used for the development of an immunotherapeutic vaccine. Ambiguity in the configuration of rhamnose led to the synthesis of tri- and disaccharide analogues containing D-rhamnose and L-rhamnose, respectively. ROESY-NMR spectra showed that CH3-6 of rhamnose and H-2 of mannose in the L-Rha containing disaccharide gave correlation. No such correlation was seen between the CH3-6 of rhamnose and the H-2 of mannose in the D-Rha containing trisaccharide. Molecular dynamics studies on hexasaccharide containing L-Rha or D-Rha confirmed that these structures adopt conformations resulting in different distances between the C6-rhamnose and the H-2 mannose of the preceding residue. We also demonstrate that assignment of the absolute configuration of the rhamnosyl residue in the ß-Rhap-(1 → 3)-D-Man linkage can be determined using the 13C chemical shift of C-2 in of D-Mannose. While ß-D-Rha will lead to an upfield shift of C-2 due to γ-gauche interaction between H-1 Rha and H-2 Man, ß-L-Rha will not. Our results provide insights to distinguish between D- and L-rhamnose in the α-D-Manp-(1 → 4)-ß-Rhap-(1 → 3) repeating motif.


Subject(s)
Autism Spectrum Disorder , Rhamnose , Child , Disaccharides , Humans , Magnetic Resonance Spectroscopy , Mannose/chemistry , Rhamnose/chemistry
2.
J Chem Phys ; 148(10): 102303, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29544287

ABSTRACT

Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.

3.
J Phys Chem A ; 119(31): 8469-75, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26090930

ABSTRACT

A combination of infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory calculations is used to investigate the structures and charge-transfer properties of clusters containing transition metals (TM = Co(II), Ni(II), Cu(I), Zn(II), Rh(III), Pd(II), Ag(I), Cd(II)) and the dodecafluorododecaboron dianion, B12F12(2-). In all cases, IRMPD resulted in transfer of electron density to the metal center and production of B12F12(-). Metals that exhibit the highest degree of charge transfer are found to induce reaction among the B12F12 cages, leading to production of BnFm (up to n = m = 24).

SELECTION OF CITATIONS
SEARCH DETAIL
...