Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 141(50): 19616-19624, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31747756

ABSTRACT

It is well-established that the inclusion of small atomic species such as boron (B) in powder metal catalysts can subtly modify catalytic properties, and the associated changes in the metal lattice imply that the B atoms are located in the interstitial sites. However, there is no compelling evidence for the occurrence of interstitial B atoms, and there is a concomitant lack of detailed structural information describing the nature of this occupancy and its effects on the metal host. In this work, we use an innovative combination of high-resolution 11B magic-angle-spinning (MAS) and 105Pd static solid-state NMR nuclear magnetic resonance (NMR), synchrotron X-ray diffraction (SXRD), in situ X-ray pair distribution function (XPDF), scanning transmission electron microscopy-annular dark field imaging (STEM-ADF), electron ptychography, and electron energy loss spectroscopy (EELS) to investigate the B atom positions, properties, and structural modifications to the palladium lattice of an industrial type interstitial boron doped palladium nanoparticle catalyst system (Pd-intB/C NPs). In this study, we report that upon B incorporation into the Pd lattice, the overall face centered cubic (FCC) lattice is maintained; however, short-range disorder is introduced. The 105Pd static solid-state NMR illustrates how different types (and levels) of structural strain and disorder are introduced in the nanoparticle history. These structural distortions can lead to the appearance of small amounts of local hexagonal close packed (HCP) structured material in localized regions. The short-range lattice tailoring of the Pd framework to accommodate interstitial B dopants in the octahedral sites of the distorted FCC structure can be imaged by electron ptychography. This study describes new toolsets that enable the characterization of industrial metal nanocatalysts across length scales from macro- to microanalysis, which gives important guidance to the structure-activity relationship of the system.

2.
Materials (Basel) ; 12(11)2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31167438

ABSTRACT

Copper-doped hydroxyapatite (HA) of nominal composition Ca10(PO4)6[Cux(OH)2-2xOx] (0.0 ≤ x ≤ 0.8) was prepared by solid-state and wet chemical processing to explore the impact of the synthesis route and mode of crystal chemical incorporation of copper on the antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) strains. Apatites prepared by solid-state reaction showed unit cell volume dilation from 527.17 Å3 for copper-free HA to 533.31 Å3 for material of the putative composition Ca10(PO4)6[Cu0.8(OH)0.4O0.8] consistent with Cu+ insertion into the [001] hydroxyapatite channel. This was less pronounced (528.30 Å3 to 529.3 Å3) in the corresponding wet chemical synthesised products, suggesting less complete Cu tunnel incorporation and partial tenancy of Cu in place of calcium. X-ray absorption spectroscopy suggests fast quenching is necessary to prevent oxidation of Cu+ to Cu2+. Raman spectroscopy revealed an absorption band at 630 cm-1 characteristic of symmetric O-Cu+-O units tenanted in the apatite channel while solid-state 31P magic-angle-spinning nuclear magnetic resonance (MAS NMR) supported a vacancy-Cu+ substitution model within the apatite channel. The copper doping strategy increases antibacterial efficiency by 25% to 55% compared to undoped HA, with the finer particle sizes and greater specific surface areas of the wet chemical material demonstrating superior efficacy.

3.
Phys Chem Chem Phys ; 20(41): 26734-26743, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30324213

ABSTRACT

The ability to clearly relate local structure to function is desirable for many catalytically relevant Pd-containing systems. This report represents the first direct 105Pd solid state NMR measurements of diamagnetic inorganic (K2Pd(iv)Cl6, (NH4)2Pd(iv)Cl6 and K2Pd(iv)Br6) complexes, and micron- and nano-sized Pd metal particles at room temperature, thereby introducing effective 105Pd chemical shift and Knight shift ranges in the solid state. The very large 105Pd quadrupole moment (Q) makes the quadrupole parameters (CQ, ηQ) extremely sensitive to small structural distortions. Despite the well-defined high symmetry octahedral positions describing the immediate Pd coordination environment, 105Pd NMR measurements can detect longer range disorder and anisotropic motion in the interstitial positions. The approach adopted here combines high resolution X-ray pair distribution function (PDF) analyses with 105Pd, 39K and 35Cl MAS NMR, and shows solid state NMR to be a very sensitive probe of short range structural perturbations. Solid state 105Pd NMR observations of ∼44-149 µm Pd sponge, ∼20-150 nm Pd black nanoparticles, highly monodisperse 16 ± 3 nm PVP-stabilised Pd nanoparticles, and highly polydisperse ∼2-1100 nm biomineralized Pd nanoparticles (bio-Pd) on pyrolysed amorphous carbon detect physical differences between these systems based on relative bulk:surface ratios and monodispersity/size homogeneity. This introduces the possibility of utilizing solid state NMR to help elucidate the structure-function properties of commercial Pd-based catalyst systems.

4.
Small ; 14(13): e1703734, 2018 03.
Article in English | MEDLINE | ID: mdl-29412512

ABSTRACT

The deposition of preformed nanocluster beams onto suitable supports represents a new paradigm for the precise preparation of heterogeneous catalysts. The performance of the new materials must be validated in model catalytic reactions. It is shown that gold/copper (Au/Cu) nanoalloy clusters (nanoparticles) of variable composition, created by sputtering and gas phase condensation before deposition onto magnesium oxide powders, are highly active for the catalytic reduction of 4-nitrophenol in solution at room temperature. Au/Cu bimetallic clusters offer decreased catalyst cost compared with pure Au and the prospect of beneficial synergistic effects. Energy-dispersive X-ray spectroscopy coupled with aberration-corrected scanning transmission electron microscopy imaging confirms that the Au/Cu bimetallic clusters have an alloy structure with Au and Cu atoms randomly located. Reaction rate analysis shows that catalysts with approximately equal amounts of Au and Cu are much more active than Au-rich or Cu-rich clusters. Thus, the interplay between the Au and Cu atoms at the cluster surface appears to enhance the catalytic activity substantially, consistent with model density functional theory calculations of molecular binding energies. Moreover, the physically deposited clusters with Au/Cu ratio close to 1 show a 25-fold higher activity than an Au/Cu reference sample made by chemical impregnation.

5.
Faraday Discuss ; 188: 39-56, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27152749

ABSTRACT

The generation of beams of atomic clusters in the gas phase and their subsequent deposition (in vacuum) onto suitable catalyst supports, possibly after an intermediate mass filtering step, represents a new and attractive approach for the preparation of model catalyst particles. Compared with the colloidal route to the production of pre-formed catalytic nanoparticles, the nanocluster beam approach offers several advantages: the clusters produced in the beam have no ligands, their size can be selected to arbitrarily high precision by the mass filter, and metal particles containing challenging combinations of metals can be readily produced. However, until now the cluster approach has been held back by the extremely low rates of metal particle production, of the order of 1 microgram per hour. This is more than sufficient for surface science studies but several orders of magnitude below what is desirable even for research-level reaction studies under realistic conditions. In this paper we describe solutions to this scaling problem, specifically, the development of two new generations of cluster beam sources, which suggest that cluster beam yields of grams per hour may ultimately be feasible. Moreover, we illustrate the effectiveness of model catalysts prepared by cluster beam deposition onto agitated powders in the selective hydrogenation of 1-pentyne (a gas phase reaction) and 3-hexyn-1-ol (a liquid phase reaction). Our results for elemental Pd and binary PdSn and PdTi cluster catalysts demonstrate favourable combinations of yield and selectivity compared with reference materials synthesised by conventional methods.

6.
J Am Chem Soc ; 137(48): 15161-8, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26544914

ABSTRACT

Identifying the ripening modes of supported metal nanoparticles used in heterogeneous catalysis can provide important insights into the mechanisms that lead to sintering. We report the observation of a crossover from Smoluchowski to Ostwald ripening, under realistic reaction conditions, for monomodal populations of precisely defined gold particles in the nanometer size range, as a function of decreasing particle size. We study the effects of the CO oxidation reaction on the size distributions and atomic structures of mass-selected Au(561±13), Au(923±20) and Au(2057±45) clusters supported on amorphous carbon films. Under the same conditions, Au(561±13) and Au(923±20) clusters are found to exhibit Ostwald ripening, whereas Au(2057±45) ripens through cluster diffusion and coalescence only (Smoluchowski ripening). The Ostwald ripening is not activated by thermal annealing or heating in O2 alone.

7.
Phys Chem Chem Phys ; 16(48): 26631-7, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25307787

ABSTRACT

We report an investigation into the effects of the vapour-phase hydrogenation of 1-pentyne on the atomic structures of size-selected Au and Pd nanoclusters supported on amorphous carbon films. We use aberration-corrected high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) to image populations of the nanoclusters at atomic resolution, both before and after the reaction, and we assign their atomic structures by comparison with multi-slice image simulations over a full range of cluster orientations. Gold nanoclusters consisting of 923 ± 20 and 2057 ± 45 atoms are found to be robust, exhibiting high structural stability. However, a significant portion of Pd923±26 nanoclusters that appear amorphous prior to treatment are found to exhibit high symmetry structures post-reaction, which is interpreted as the reduction of oxidised Pd nanoclusters under the reaction conditions.

8.
J Am Chem Soc ; 134(2): 855-8, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22239232

ABSTRACT

This Communication describes the synthesis of highly monodispersed 12 nm nickel nanocubes. The cubic shape was achieved by using trioctylphosphine and hexadecylamine surfactants under a reducing hydrogen atmosphere to favor thermodynamic growth and the stabilization of {100} facets. Varying the metal precursor to trioctylphosphine ratio was found to alter the nanoparticle size and shape from 5 nm spherical nanoparticles to 12 nm nanocubes. High-resolution transmission electron microscopy showed that the nanocubes are protected from further oxidation by a 1 nm NiO shell. Synchrotron-based X-ray diffraction techniques showed the nickel nanocubes order into [100] aligned arrays. Magnetic studies showed the nickel nanocubes have over 4 times enhancement in magnetic saturation compared to spherical superparamagnetic nickel nanoparticles.


Subject(s)
Magnetic Phenomena , Nanostructures/chemistry , Nickel/chemistry , Microscopy, Electron, Transmission
9.
ACS Nano ; 4(1): 396-402, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-20028103

ABSTRACT

Palladium is widely used as a catalyst in pharmaceutical and chemical syntheses as well as in the reduction of harmful exhaust emissions. Therefore, the development of high performance palladium catalysts is an area of major concern. In this paper, we present the synthesis of highly branched palladium nanostructures in a simple solution phase reaction at room temperature. By varying the nature of the organic stabilizer system we demonstrate control over the reaction kinetics and hence the shape of the nanostructures. Investigations into the structural evolution of the nanostructures show that they form from multiply twinned face centered cubic (fcc) nanoparticle nuclei. Reaction kinetics then determine the resulting shape where ultrafast growth is shown to lead to the highly branched nanostructures. These results will contribute greatly to the understanding of complex nanoparticle growth from all fcc metals. The nanostructures then show excellent catalytic activity for the hydrogenation of nitrobenzene to aniline.

10.
Dalton Trans ; (10): 1267-70, 2006 Mar 14.
Article in English | MEDLINE | ID: mdl-16505904

ABSTRACT

2,4,6-trialkylbenzenethiols react with [RuCl2(PPh3)3] to give Ru products with the alkyl substituents forming M-C sigma bonds, carbene, carbene with a S alpha-heteroatom, agostic hydrogen interaction or a simple tetrahedral Ru(II) species, depending on the substituent.

SELECTION OF CITATIONS
SEARCH DETAIL
...