Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 12: 855119, 2022.
Article in English | MEDLINE | ID: mdl-35865815

ABSTRACT

Drug repurposing and combination therapy have been proposed as cost-effective strategies to improve Chagas disease treatment. Miltefosine (MLT), a synthetic alkylphospholipid initially developed for breast cancer and repositioned for leishmaniasis, is a promising candidate against Trypanosoma cruzi infection. This study evaluates the efficacy of MLT as a monodrug and combined with benznidazole (BZ) in both in vitro and in vivo models of infection with T. cruzi (VD strain, DTU TcVI). MLT exhibited in vitro activity on amastigotes and trypomastigotes with values of IC50 = 0.51 µM (0.48 µM; 0,55 µM) and LC50 = 31.17 µM (29.56 µM; 32.87 µM), respectively. Drug interaction was studied with the fixed-ration method. The sum of the fractional inhibitory concentrations (ΣFICs) resulted in ∑FIC= 0.45 for trypomastigotes and ∑FIC= 0.71 for amastigotes, suggesting in vitro synergistic and additive effects, respectively. No cytotoxic effects on host cells were observed. MLT efficacy was also evaluated in a murine model of acute infection alone or combined with BZ. Treatment was well tolerated with few adverse effects, and all treated animals displayed significantly lower mean peak parasitemia and mortality than infected non-treated controls (p<0.05). The in vivo studies showed that MLT led to a dose-dependent parasitostatic effect as monotherapy which could be improved by combining with BZ, preventing parasitemia rebound after a stringent immunosuppression protocol. These results support MLT activity in clinically relevant stages from T. cruzi, and it is the first report of positive interaction with BZ, providing further support for evaluating combined schemes using MLT and exploring synthetic alkylphospholipids as drug candidates.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Mice , Nitroimidazoles , Parasitemia/drug therapy , Phosphorylcholine/analogs & derivatives , Trypanocidal Agents/pharmacology
2.
Mol Diagn Ther ; 25(6): 791-801, 2021 11.
Article in English | MEDLINE | ID: mdl-34426953

ABSTRACT

BACKGROUND AND OBJECTIVE: The real prevalence of congenital Chagas disease is undefined because of difficulties in the detection of Trypanosoma cruzi by microscopic examination. The aim of this study was to determine the diagnostic accuracy of two molecular diagnostic tools, qPCR and LAMP, in the diagnosis of congenital Chagas disease in a clinical setting. METHODS: To this end, we conducted a prospective cohort study in a tertiary care center, of infants under 9 months of age, born in Buenos Aires to women with Chagas disease. Blood samples were collected for microscopic examination and molecular diagnosis at baseline. If negative, infants were followed up until 9 months of age to determine a final diagnosis by serology. In-house qPCR and LAMP previously validated were challenged as index tests. RESULTS: A total of 154 participants were potentially eligible, 120 of whom were enrolled. Finally, 102 (66.2%) of them fulfilled the follow-up. The diagnosis of congenital Chagas disease was confirmed in 13 infants and excluded in 89. Both the sensitivity and specificity of the qPCR were 100.0% (95% confidence interval 75.3-100.0 and 95% confidence interval 95.9-100.0, respectively), whereas the sensitivity and specificity of LAMP were 69.2% (95% confidence interval 38.6-90.9) and 100% (95% confidence interval 95.9-100.0), respectively. CONCLUSIONS: The qPCR agreed with the current diagnostic algorithm, and was a reliable and sensitive tool to detect congenital Chagas disease earlier, providing an appropriate and timely identification of infected infants requiring treatment. LAMP was able to detect congenital Chagas disease in infected infants by naked-eye visualization in accordance with a microscopic examination. The advantages of molecular diagnostic tools should be taken into account by the health system to improve congenital Chagas disease diagnosis.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Chagas Disease/congenital , Chagas Disease/diagnosis , Female , Humans , Infant , Prospective Studies , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Trypanosoma cruzi/genetics
3.
PLoS One ; 12(10): e0185504, 2017.
Article in English | MEDLINE | ID: mdl-28972996

ABSTRACT

BACKGROUND: Chagas disease is a debilitating often fatal disease resulting from infection by the protozoan parasite Trypanosoma cruzi. Chagas disease is endemic in 21 countries of the Americas, and it is an emerging disease in other countries as a result of migration. Given the chronic nature of the infection where intracellular parasites persist for years, the diagnosis of T. cruzi by direct detection is difficult, whereas serologic tests though sensitive may yield false-positive results. The development of new rapid test based on the identification of soluble parasitic antigens in serum would be a real innovation in the diagnosis of Chagas disease. METHODS: To identify new soluble biomarkers that may improve diagnostic tests, we investigated the proteins secreted by T. cruzi using mass spectrometric analyses of conditioned culture media devoid of serum collected during the emergence of trypomastigotes from infected Vero cells. In addition, we compared the secretomes of two T. cruzi strains from DTU Tc VI (VD and CL Brener). RESULTS: Analysis of the secretome collected during the emergence of trypomastigotes from Vero cells led to the identification of 591 T. cruzi proteins. Three hundred sixty three proteins are common to both strains and most belong to different multigenic super families (i.e. TcS, GP63, MASP, and DGF1). Ultimately we have established a list of 94 secreted proteins, common to both DTU Tc VI strains that do not belong to members of multigene families. CONCLUSIONS: This study provides the first comparative analysis of the secretomes from two distinct T. cruzi strains of DTU TcVI. This led us to identify a subset of common secreted proteins that could potentially serve as serum markers for T. cruzi infection. Their potential could now be evaluated, with specific antibodies using sera collected from patients and residents from endemic regions.


Subject(s)
Proteomics , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Animals , Chlorocebus aethiops , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Tandem Mass Spectrometry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...