Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 20(10): 6354-6367, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32384985

ABSTRACT

Metallic structures are conventionally fabricated with high temperature/deformation processes resulting the smallest possible microscopic structures in the order of several hundreds of micrometer. Therefore, to obtain structures with fibers smaller than 100 µm, those are unsuitable. In this study, electrospinning, a fiber fabrication technique commonly used for polymers, was adopted to fabricate a WE43 magnesium alloy-like fibrous structure. The aim is to adopt metallic WE43 alloy to regenerative medicine using tissue engineering approach by mimicking its composition inside of a fibrous structure. The solution required for electrospinning was obtained with water soluble nitrates of elements in WE43 alloy, and PVP or PVA were added to obtain a spinnable viscosity which was pyrolised away during heat treatment. Electrospinning parameters were optimized with naked-eye observations and SEM as 1.5 g salts and 5 wt.% PVA containing solution prepared at 90 °C and electrospun under 30 kV from a distance of 12-15 cm with a feeding rate of 5 µl/min. Then the samples were subjected to a multi-step heat treatment under argon to remove the polymer and calcinate the nitrates into oxides which was designed based on thermal analyses and reaction kinetics calculations as 6 h at 230 °C, 8.5 h at 390 °C, 5 h at 465 °C, 80 h at 500 °C and 10 h at 505 °C, consecutively. The characterizations conducted in terms of structure, composition and crystallinity with XRD, XPS, EDX and SEM showed that it is possible to obtain MgaYbNdcZrdOx (empirical) fibers with the same composition as WE43 in sub-millimeter sizes using this approach.

2.
Phys Chem Chem Phys ; 16(12): 5563-70, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24514029

ABSTRACT

The detection of molecules at an ultralow level by Surface-Enhanced Raman Spectroscopy (SERS) has recently attracted enormous interest for various applications especially in biological, medical, and environmental fields. Despite the significant progress, SERS systems are still facing challenges for practical applications related to their sensitivity, reliability, and selectivity. To overcome these limitations, in this study, we have proposed a simple yet facile concept by combining 3-D anisotropic gold nanorod arrays with colloidal gold nanoparticles having different shapes for highly reliable, selective, and sensitive detection of some hazardous chemical and biological warfare agents in trace amounts through SERS. The gold nanorod arrays were created on the BK7 glass slides or silicon wafer surfaces via the oblique angle deposition (OAD) technique without using any template material or lithography technique and their surface densities were adjusted by manipulating the deposition angle (α). It is found that gold nanorod arrays fabricated at α = 10° exhibited the highest SERS enhancement in the absence of colloidal gold nanoparticles. Synergetic enhancement was obviously observed in SERS signals when combining gold nanorod arrays with colloidal gold nanoparticles having different shapes (i.e., spherical, rod, and cage). Due to their ability to produce localized surface plasmons (LSPs) in transverse and longitudinal directions, utilization of colloidal gold nanorods as a synergetic agent led to an increase in the enhancement factor by about tenfold compared to plain gold nanorod arrays. Moreover, we have tested our approach to detect some chemical and biological toxins namely dipicolinic acid (DIP), methyl parathion (MP), and diethyl phosphoramidate (DP). For all toxins, Raman spectra with high signal-to-noise ratios and reproducibility were successfully obtained over a broad concentration range (5 ppm-10 ppb). Our results suggest that the slightly tangled and closely-packed anisotropic gold nanorod arrays reinforced by the gold nanoparticles may serve as an ideal SERS substrate to detect any analyte in trace amounts.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Amides/analysis , Colloids/chemistry , Methyl Parathion/analysis , Organophosphorus Compounds/analysis , Particle Size , Picolinic Acids/analysis , Spectrum Analysis, Raman , Surface Properties
3.
Chemosphere ; 61(9): 1263-72, 2005 Dec.
Article in English | MEDLINE | ID: mdl-15904947

ABSTRACT

Poly(Hydroxyethylmethacrylate-Ethyleneglycoldimethacrylate), poly(HEMA-EGDMA), microbeads with 150-200 microm in size, was prepared by suspension polymerization. Beta-cyclodextrin was modified onto the polymeric microbeads using glutaraldahyde activation in an acidic medium at pH=2.5. FT-IR and TGA were used for the characterization of modified polymers and the determination of the nature of the interaction between phenolic compounds and the modified polymeric microbeads. Plain and beta-cyclodextrin modified microbeads were used in adsorption-desorption studies of phenolic species in single solution. Adsorption capacities of the phenolic species onto the plain microbeads were found to be 28.2, 17.0, 14.3, 9.8, and 1.92 mg/g polymer for o-chloro phenol, p-nitro phenol, p-chloro phenol, o-nitro phenol, and phenol, respectively. However, for beta-cyclodextrin modified microbeads, adsorption capacity of phenolic species was determined as 274, 365, 128, 182, and 87 mg/g for phenol, o-nitro phenol, p-nitro phenol, o-chloro phenol, and p-chloro phenol, respectively. Desorption ratio for the phenolic species was more than 90%, except for o-nitro phenol. Detection limits of the phenolic species were improved at least 500-fold for UV-Vis spectrophotometric detection, after the pre-concentration of all phenolic species used in this study. Adsorption time for the phenolic species onto beta-cyclodextrin-modified poly(HEMA-EGDMA) microbeads was found to be reasonable short (10-60 min) and suitable for the applications. Also, synthesized microbeads were useful for the repeated use for the removal and pre-concentration of phenolic species.


Subject(s)
Phenols/chemistry , Phenols/isolation & purification , Polymethacrylic Acids/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Particle Size , Water Purification , beta-Cyclodextrins
SELECTION OF CITATIONS
SEARCH DETAIL
...