Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 133(6): 1626-9, 2011 Feb 16.
Article in English | MEDLINE | ID: mdl-21265513

ABSTRACT

A VIS pump/hyperspectral NIR probe study of all-trans-retinal protonated Schiff base (RPSB) in ethanol is presented. Upon irradiation, a short-lived absorption band covers the recorded range of λ = 1-2 µm. It decays to reveal the tail of S(1) emission at λ < 1.3 µm, along with a residual absorption at longer wavelengths, both of which decay with the known kinetics of internal conversion to S(0). The existence of this hitherto unrecorded excited-state absorption deep in the NIR will require a revision of current models for RPSB electronic structure. The phenomenological similarity of these observations with ultrafast NIR studies of carotenoids raises the question of whether three, and not two, electronic states participate in RPSB photochemistry as well. The relevance of these observations to retinal protein photochemistry is discussed.


Subject(s)
Eye Proteins/chemistry , Photochemical Processes , Retina/chemistry , Spectrum Analysis , Schiff Bases/chemistry
2.
Phys Chem Chem Phys ; 12(9): 2149-63, 2010 Mar 07.
Article in English | MEDLINE | ID: mdl-20165763

ABSTRACT

The well-documented propensity of negatively-chirped pulses to enhance resonant impulsive Raman scattering has been rationalized in terms of a one pulse pump-dump sequence which "follows" the evolution of the excited molecules and dumps them back at highly displaced configurations. The aim of this study was to extend the understanding of this effect to molecules with many displaced vibrational modes in the presence of condensed surroundings. In particular, to define an optimally chirped pulse, to investigate what exactly it "follows" and to discover how this depends on the molecule under study. To this end, linear chirp effects on vibrational coherences in poly-atomics are investigated experimentally and theoretically. Chirped pump-impulsive probe experiments are reported for Sulforhodamine-B ("Kiton Red"), Betaine-30 and Oxazine-1 in ethanol solutions with <10 fs resolution. Numerical simulations, including numerous displaced modes and electronic dephasing, are conducted to reproduce experimental results. Through semi-quantitative reproduction of experimental results in all three systems we show that the effect of group velocity dispersion (GVD) on the buildup of ground state wave-packets depends on the pulse spectrum, on the displacements of vibrational modes upon excitation, on the detuning of the excitation pulses from resonance, and on electronic dephasing rates. Akin to scenarios described for frequency-domain resonance Raman, within the small-displacement regime each mode responds to excitation chirp independently and the optimal GVD is mode-specific. Highly-displaced modes entangle the dynamics of excitation in different modes, requiring a multi-dimensional description of the response. Rapid photochemistry and ultrafast electronic dephasing narrow the window of opportunity for coherent manipulations, leading to a reduced and similar optimal chirp for different modes. Finally, non-intuitive coherent aspects of chirp "following" are predicted in the small-displacement and slow-dephasing regime, which remain to be observed in experiment.

3.
J Phys Chem B ; 114(8): 3046-51, 2010 Mar 04.
Article in English | MEDLINE | ID: mdl-20143798

ABSTRACT

The primary photochemical dynamics of Hb. pharaonis Halorhodopsin (pHR) are investigated by femtosecond visible pump-near IR dump-hyperspectral probe spectroscopy. The efficiency of excited state depletion is deduced from transient changes in absorption, recorded with and without stimulated emission pumping (SEP), as a function of the dump delay. The concomitant reduction of photocycle population is assessed by probing the "K" intermediate difference spectrum. Results show that the cross section for stimulating emission is nearly constant throughout the fluorescent state lifetime. Probing "K" demonstrates that dumping produces a proportionate reduction in photocycle yields. We conclude that, despite its nonexponential internal conversion (IC) kinetics, the fluorescent state in pHR constitutes a single intermediate in the photocycle. This contrasts with conclusions drawn from the study of primary events in the related chloride pump from Hb. salinarum (sHR), believed to produce the "K" intermediate from a distinct short-lived subpopulation in the excited state. Our discoveries concerning internal conversion dynamics in pHR are discussed in light of recent expectations for similar excited state dynamics in both proteins.


Subject(s)
Halorhodopsins/chemistry , Natronobacterium/chemistry , Quantum Theory , Halobacterium salinarum/chemistry , Halobacterium salinarum/metabolism , Halorhodopsins/metabolism , Natronobacterium/metabolism , Photochemistry , Spectroscopy, Near-Infrared
4.
J Phys Chem B ; 111(9): 2327-34, 2007 Mar 08.
Article in English | MEDLINE | ID: mdl-17298090

ABSTRACT

A retinal Schiff base analogue which artificially mimics the protein-induced red shifting of absorption in bacteriorhodopsin (BR) has been investigated with femtosecond multichannel pump probe spectroscopy. The objective is to determine if the catalysis of retinal internal conversion in the native protein BR, which absorbs at 570 nm, is directly correlated with the protein-induced Stokes shifting of this absorption band otherwise known as the "opsin shift". Results demonstrate that the red shift afforded in the model system does not hasten internal conversion relative to that taking place in a free retinal-protonated Schiff base (RPSB) in methanol solution, and stimulated emission takes place with biexponential kinetics and characteristic timescales of approximately 2 and 10.5 ps. This shows that interactions between the prosthetic group and the protein that lead to the opsin shift in BR are not directly involved in reducing the excited-state lifetime by nearly an order of magnitude. A sub-picosecond phase of spectral evolution, analogues of which are detected in photoexcited retinal proteins and RPSBs in solution, is observed after excitation anywhere within the intense visible absorption band. It consists of a large and discontinuous spectral shift in excited-state absorption and is assigned to electronic relaxation between excited states, a scenario which might also be relevant to those systems as well. Finally, a transient excess bleach component that tunes with the excitation wavelength is detected in the data and tentatively assigned to inhomogeneous broadening in the ground state absorption band. Possible sources of such inhomogeneity and its relevance to native RPSB photochemistry are discussed.


Subject(s)
Bacteriorhodopsins/chemistry , Photochemistry/methods , Rod Opsins/chemistry , Schiff Bases/chemistry , Aldehydes/chemistry , Biophysics/methods , Chemistry, Physical/methods , Ethanol/chemistry , Kinetics , Models, Chemical , Photons , Protons , Static Electricity , Temperature
5.
J Phys Chem A ; 109(37): 8246-53, 2005 Sep 22.
Article in English | MEDLINE | ID: mdl-16834211

ABSTRACT

Closed loop automated pulse shaping experiments are conducted to investigate population transfer in solutions of the laser dye LDS750 in acetonitrile and ethanol. Guided by a genetic algorithm, the optical phases of broadband noncollinear parametric amplifier pulses are modulated by a micromachined deformable mirror to minimize sample fluorescence. The objectives were to test if nonlinearly chirped pulses could reduce population transfer below levels attained by their linearly chirped analogues, and if so, whether the resulting pulse shapes could be rationalized in terms of the photoinduced molecular dynamics. We further aimed to discover how the optimal solutions depend on the pulse fluence, and on the nature of the solvent. Using frequency resolved optical gating, the optimal field is shown to consist of a transform limited blue portion, which promotes population to the excited state, and a negatively chirped red tail, which follows the Stokes shifting of the excited density and dumps it back down to the ground state through stimulated emission. This is verified by comparing the optimal group delay dispersion with multichannel transient absorption data collected in acetonitrile. The optimal pulse shape was not significantly affected by variation of pulse fluence or by the change of solvent for the two polar liquids investigated. These results are discussed in terms of accumulated insights concerning the photophysics of LDS750 and the capabilities of our learning feedback scheme for quantum control.

SELECTION OF CITATIONS
SEARCH DETAIL
...