Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 5(3): 103192, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39024095

ABSTRACT

Coaggregation assays using K562 cells have been extensively employed to study how cell adhesion molecules mediate specificity between different populations. Here we describe how to prepare K562 cells, optimize electroporation conditions, calibrate antibodies used for protein detection, determine the surface expression of desired adhesion molecules, and considerations for the rotational force to be applied during the assay. We also detail procedures for analyzing coaggregates using our established CoAggregation (CoAg) Index. For complete details on the use and execution of this protocol, please refer to Bisogni et al.1.

2.
iScience ; 26(11): 108220, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37965156

ABSTRACT

The mouse olfactory system regenerates constantly throughout life. While genes critical for the initial projection of olfactory sensory neurons (OSNs) to the olfactory bulb have been identified, what genes are important for maintaining the olfactory map during regeneration are still unknown. Here we show a mutation in Protocadherin 19 (Pcdh19), a cell adhesion molecule and member of the cadherin superfamily, leads to defects in OSN coalescence during regeneration. Surprisingly, lateral glomeruli were more affected and males in particular showed a more severe phenotype. Single cell analysis unexpectedly showed OSNs expressing the MOR28 odorant receptor could be subdivided into two major clusters. We showed that at least one protocadherin is differentially expressed between OSNs coalescing on the medial and lateral glomeruli. Moreover, females expressed a slightly different complement of genes from males. These features may explain the differential effects of mutating Pcdh19 on medial and lateral glomeruli in males and females.

3.
Elife ; 72018 12 14.
Article in English | MEDLINE | ID: mdl-30547884

ABSTRACT

The delta-protocadherins (δ-Pcdhs) play key roles in neural development, and expression studies suggest they are expressed in combination within neurons. The extent of this combinatorial diversity, and how these combinations influence cell adhesion, is poorly understood. We show that individual mouse olfactory sensory neurons express 0-7 δ-Pcdhs. Despite this apparent combinatorial complexity, K562 cell aggregation assays revealed simple principles that mediate tuning of δ-Pcdh adhesion. Cells can vary the number of δ-Pcdhs expressed, the level of surface expression, and which δ-Pcdhs are expressed, as different members possess distinct apparent adhesive affinities. These principles contrast with those identified previously for the clustered protocadherins (cPcdhs), where the particular combination of cPcdhs expressed does not appear to be a critical factor. Despite these differences, we show δ-Pcdhs can modify cPcdh adhesion. Our studies show how intra- and interfamily interactions can greatly amplify the impact of this small subfamily on neuronal function.


Subject(s)
Cadherins/genetics , Gene Expression Profiling , Olfactory Receptor Neurons/metabolism , Protein Precursors/genetics , Animals , Cadherins/metabolism , Cell Adhesion/genetics , Cells, Cultured , Female , Humans , K562 Cells , Male , Mice, Inbred C57BL , Mutation , Olfactory Receptor Neurons/cytology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Precursors/metabolism , Single-Cell Analysis/methods
4.
BMC Syst Biol ; 10(Suppl 5): 127, 2016 Dec 05.
Article in English | MEDLINE | ID: mdl-28105940

ABSTRACT

BACKGROUND: Large scale single cell transcriptome profiling has exploded in recent years and has enabled unprecedented insight into the behavior of individual cells. Identifying genes with high levels of expression using data from single cell RNA sequencing can be useful to characterize very active genes and cells in which this occurs. In particular single cell RNA-Seq allows for cell-specific characterization of high gene expression, as well as gene coexpression. RESULTS: We offer a versatile modeling framework to identify transcriptional states as well as structures of coactivation for different neuronal cell types across multiple datasets. We employed a gamma-normal mixture model to identify active gene expression across cells, and used these to characterize markers for olfactory sensory neuron cell maturity, and to build cell-specific coactivation networks. We found that combined analysis of multiple datasets results in more known maturity markers being identified, as well as pointing towards some novel genes that may be involved in neuronal maturation. We also observed that the cell-specific coactivation networks of mature neurons tended to have a higher centralization network measure than immature neurons. CONCLUSION: Integration of multiple datasets promises to bring about more statistical power to identify genes and patterns of interest. We found that transforming the data into active and inactive gene states allowed for more direct comparison of datasets, leading to identification of maturity marker genes and cell-specific network observations, taking into account the unique characteristics of single cell transcriptomics data.


Subject(s)
Computational Biology/methods , Gene Expression Profiling , Genetic Markers/genetics , Neurons/cytology , Neurons/metabolism , Single-Cell Analysis , Transcriptional Activation , Gene Regulatory Networks , Olfactory Receptor Neurons/cytology , Olfactory Receptor Neurons/metabolism
5.
Article in English | MEDLINE | ID: mdl-21897809

ABSTRACT

Olfactory sensory neurons (OSNs) are thought to use activity-dependent and independent mechanisms to regulate the expression of axon guidance genes. However, defining the molecular mechanisms that underlie activity-dependent OSN guidance has remained elusive. Only a handful of genes have been identified whose expression is regulated by activity. Interestingly, all of these genes have been shown to play a role in OSN axon guidance, underscoring the importance of identifying other genes regulated by activity. Furthermore, studies suggest that more than one downstream mechanism regulates target gene expression. Thus, both the number of genes regulated by activity and how many total mechanisms control this expression are not well understood. Here we identify delta protocadherin 10 (pcdh10) as a gene regulated by activity. Delta protocadherins are members of the cadherin superfamily, and pcdh10 is known to be important for axon guidance during development. We show pcdh10 is expressed in the nasal epithelium and olfactory bulb in patterns consistent with providing guidance information to OSNs. We use naris occlusion, genetic manipulations, and pharmacological assays to show pcdh10 can be regulated by activity, consistent with activation via the cyclic nucleotide-gated channel. Transgenic analysis confirms a potential role for pcdh10 in OSN axon guidance.

SELECTION OF CITATIONS
SEARCH DETAIL
...