Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3496, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664432

ABSTRACT

Magnetic van der Waals (vdW) materials have opened new frontiers for realizing novel many-body phenomena. Recently NiPS3 has received intense interest since it hosts an excitonic quasiparticle whose properties appear to be intimately linked to the magnetic state of the lattice. Despite extensive studies, the electronic character, mobility, and magnetic interactions of the exciton remain unresolved. Here we address these issues by measuring NiPS3 with ultra-high energy resolution resonant inelastic x-ray scattering (RIXS). We find that Hund's exchange interactions are primarily responsible for the energy of formation of the exciton. Measuring the dispersion of the Hund's exciton reveals that it propagates in a way that is analogous to a double-magnon. We trace this unique behavior to fundamental similarities between the NiPS3 exciton hopping and spin exchange processes, underlining the unique magnetic characteristics of this novel quasiparticle.

2.
Sci Data ; 10(1): 174, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36991033

ABSTRACT

Ruddlesden-Popper and reduced Ruddlesden-Popper nickelates are intriguing candidates for mimicking the properties of high-temperature superconducting cuprates. The degree of similarity between these nickelates and cuprates has been the subject of considerable debate. Resonant inelastic x-ray scattering (RIXS) has played an important role in exploring their electronic and magnetic excitations, but these efforts have been stymied by inconsistencies between different samples and the lack of publicly available data for detailed comparison. To address this issue, we present open RIXS data on La4Ni3O10 and La4Ni3O8.

3.
Phys Rev Lett ; 126(8): 087001, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33709756

ABSTRACT

The discovery of superconductivity in a d^{9-δ} nickelate has inspired disparate theoretical perspectives regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could be realized. We address this question using Ni L-edge and O K-edge spectroscopy of the reduced d^{9-1/3} trilayer nickelates R_{4}Ni_{3}O_{8} (where R=La, Pr) and associated theoretical modeling. A magnon energy scale of ∼80 meV resulting from a nearest-neighbor magnetic exchange of J=69(4) meV is observed, proving that d^{9-δ} nickelates can host a large superexchange. This value, along with that of the Ni-O hybridization estimated from our O K-edge data, implies that trilayer nickelates represent an intermediate case between the infinite-layer nickelates and the cuprates. Layered nickelates thus provide a route to testing the relevance of superexchange to nickelate superconductivity.

4.
Phys Rev Lett ; 125(9): 097002, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32915627

ABSTRACT

Charge density wave (CDW) correlations are prevalent in all copper-oxide superconductors. While CDWs in conventional metals are driven by coupling between lattice vibrations and electrons, the role of the electron-phonon coupling (EPC) in cuprate CDWs is strongly debated. Using Cu L_{3} edge resonant inelastic x-ray scattering, we study the CDW and Cu-O bond-stretching phonons in the stripe-ordered cuprate La_{1.8-x}Eu_{0.2}Sr_{x}CuO_{4+δ}. We investigate the interplay between charge order and EPC as a function of doping and temperature and find that the EPC is enhanced in a narrow momentum region around the CDW ordering vector. By detuning the incident photon energy from the absorption resonance, we extract an EPC matrix element at the CDW ordering vector of M≃0.36 eV, which decreases to M≃0.30 eV at high temperature in the absence of the CDW. Our results suggest a feedback mechanism in which the CDW enhances the EPC which, in turn, further stabilizes the CDW.

5.
Phys Rev Lett ; 124(20): 207005, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32501068

ABSTRACT

The discovery of charge-density-wave-related effects in the resonant inelastic x-ray scattering spectra of cuprates holds the tantalizing promise of clarifying the interactions that stabilize the electronic order. Here, we report a comprehensive resonant inelastic x-ray scattering study of La_{2-x}Sr_{x}CuO_{4} finding that charge-density wave effects persist up to a remarkably high doping level of x=0.21 before disappearing at x=0.25. The inelastic excitation spectra remain essentially unchanged with doping despite crossing a topological transition in the Fermi surface. This indicates that the spectra contain little or no direct coupling to electronic excitations near the Fermi surface, rather they are dominated by the resonant cross section for phonons and charge-density-wave-induced phonon softening. We interpret our results in terms of a charge-density wave that is generated by strong correlations and a phonon response that is driven by the charge-density-wave-induced modification of the lattice.

6.
Sci Rep ; 6: 32896, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27616448

ABSTRACT

The recently discovered structural reconstruction in the cuprate superlattice (SrCuO2)n/(SrTiO3)2 has been investigated across the critical value of n = 5 using resonant inelastic x-ray scattering (RIXS). We find that at the critical value of n, the cuprate layer remains largely in the bulk-like two-dimensional structure with a minority of Cu plaquettes being reconstructed. The partial reconstruction leads to quenching of the magnons starting at the Γ-point due to the minority plaquettes acting as scattering points. Although comparable in relative abundance, the doped charge impurities in electron-doped cuprate superconductors do not show this quenching of magnetic excitations.

7.
Phys Rev Lett ; 114(13): 133001, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25884123

ABSTRACT

Resonant inelastic x-ray scattering spectra excited in the immediate vicinity of the core-level ionization thresholds of N2 have been recorded. Final states of well-resolved symmetry-selected Rydberg series converging to valence-level ionization thresholds with vibrational excitations are observed. The results are well described by a quasi-two-step model which assumes that the excited electron is unaffected by the radiative decay. This threshold dynamics simplifies the interpretation of resonant inelastic x-ray scattering spectra considerably and facilitates characterization of low-energy excited final states in molecular systems.


Subject(s)
Models, Theoretical , X-Ray Diffraction/methods , Elasticity , Nitrogen/chemistry
8.
J Phys Condens Matter ; 24(4): 045503, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22217443

ABSTRACT

Polarization dependent vanadium L edge x-ray absorption spectra of BaVS(3) single crystals are measured in the four phases of the compound. The difference between signals with the polarizations E perpendicular to c and E is parallel to c (linear dichroism) changes with temperature. Besides increasing the intensity of one of the maxima, a new structure appears in the pre-edge region below the metal-insulator transition. More careful examination brings to light that the changes start already with pretransitional charge density wave fluctuations. Simple symmetry analysis suggests that the effect is related to rearrangements in the E(g) and A(1g) states, and is compatible with the formation of four inequivalent V-sites along the V-S chain.

9.
Phys Rev Lett ; 104(7): 077002, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-20366909

ABSTRACT

We probe the collective magnetic modes of La2CuO4 and underdoped La2-xSrxCuO4 (LSCO) by momentum resolved resonant inelastic x-ray scattering (RIXS) at the Cu L3 edge. For the undoped antiferromagnetic sample, we show that the single magnon dispersion measured with RIXS coincides with the one determined by inelastic neutron scattering, thus demonstrating that x rays are an alternative to neutrons in this field. In the spin dynamics of LSCO, we find a branch dispersing up to approximately 400 meV coexisting with one at lower energy. The high-energy branch has never been seen before. It indicates that underdoped LSCO is in a dynamic inhomogeneous spin state.

10.
Phys Rev Lett ; 102(16): 166804, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19518739

ABSTRACT

In 2004, Ohtomo and Hwang discovered that an electron gas is created at the interface between insulating LaAlO3 and SrTiO3 compounds. Here we show that the generation of a conducting electron gas is related to an orbital reconstruction occurring at the LaAlO3/SrTiO3 interface. Our results are based on extensive investigations of the electronic properties and of the orbital structure of the interface using x-ray absorption spectroscopy. In particular, we find that the degeneracy of the Ti 3d states is fully removed and that the Ti 3d xy levels become the first available states for conducting electrons.

11.
Phys Rev Lett ; 102(16): 167401, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19518752

ABSTRACT

By resonant inelastic x-ray scattering in the soft x-ray regime we probe the dynamical multiple-spin correlations in the antiferromagnetic cuprates La2CuO4 and CaCuO2. High resolution measurements at the copper L3 edge allow the clear observation of dispersing bimagnon excitations. Theory based on the ultrashort core-hole lifetime expansion fits the data on these coherent spin excitations without free parameters.

12.
Phys Rev Lett ; 100(13): 137401, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18517994

ABSTRACT

Linear dichroism (LD) in x-ray absorption, diffraction, transport, and magnetization measurements on thin La(0.7)Sr(0.3)MnO(3) films grown on different substrates, allow identification of a peculiar interface effect, related just to the presence of the interface. We report the LD signature of preferential 3d-e(g)(3z(2)-r(2)) occupation at the interface, suppressing the double exchange mechanism. This surface orbital reconstruction is opposite to that favored by residual strain and is independent of dipolar fields, the chemical nature of the substrate and the presence of capping layers.

SELECTION OF CITATIONS
SEARCH DETAIL
...