Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chromosome Res ; 13(2): 205-14, 2005.
Article in English | MEDLINE | ID: mdl-15861309

ABSTRACT

Birds undergo genetic sex determination using a ZW sex chromosome system. Although the avian mechanisms of neither sex determination nor dosage compensation are understood, a female-specific non-coding RNA (MHM) is expressed soon after fertilisation from the single Z chicken chromosome and is likely to have a role in one or both processes. We have now discovered a prominent female-specific modification to the Z chromatin in the region of the MHM locus. We find that chicken chromatin at Zp21, including the MHM locus, is strongly enriched for acetylation of histone H4 at lysine residue 16 in female but not male chromosomes. Interestingly, this specific histone modification is also enriched along the length of the up-regulated Drosophila melanogaster male X chromosome where it plays a vital role in the dosage compensation process.


Subject(s)
Chickens/genetics , Chromatin/metabolism , Histones/metabolism , Sex Chromosomes/genetics , Acetylation , Animals , Cells, Cultured , Dosage Compensation, Genetic , Female , Fibroblasts , In Situ Hybridization, Fluorescence , Male , Sex Factors
2.
Antimicrob Agents Chemother ; 47(2): 709-18, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12543682

ABSTRACT

The genetic determinants of resistance to mefloquine in malaria parasites are unclear. Some studies have implied that amplification of, or mutations in, the multidrug resistance gene pfmdr1 in Plasmodium falciparum may be involved. Using the rodent malaria model Plasmodium chabaudi, we investigated the role of the orthologue of this gene, pcmdr1, in a stable mefloquine-resistant mutant, AS(15MF/3), selected from a sensitive clone. pcmdr1 exists as a single copy gene on chromosome 12 of the sensitive clone. In AS(15MF/3), the gene was found to have undergone duplication, with one copy translocating to chromosome 4. mRNA levels of pcmdr1 were higher in the mutant than in the parent sensitive clone. A partial genetic map of the translocation showed that other genes in addition to pcmdr1 had been cotranslocated. The sequences of both copies of pcmdr1 of AS(15MF/3) were identical to that of the parent sensitive clone. A cross was made between AS(15MF/3) and an unrelated mefloquine-sensitive clone, AJ. Phenotypic and molecular analysis of progeny clones showed that duplication and overexpression of the pcmdr1 gene was an important determinant of resistance. However, not all mefloquine-resistant progeny contained the duplicated gene, showing that at least one other gene was involved in resistance.


Subject(s)
Antimalarials/pharmacology , Mefloquine/pharmacology , Plasmodium chabaudi/genetics , Animals , Drug Resistance/genetics , Karyotyping , Plasmodium chabaudi/drug effects , Translocation, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...