Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hered ; 103(1): 28-35, 2012.
Article in English | MEDLINE | ID: mdl-22003195

ABSTRACT

The spatial genetic structure of plant populations is determined by a combination of gene flow, genetic drift, and natural selection. Gene flow in most plants can result from either seed or pollen dispersal, but detailed investigations of pollen and seed flow among populations that have diverged following local adaptation are lacking. In this study, we compared pollen and seed flow among 10 populations of sweet vernal grass (Anthoxanthum odoratum) on the Park Grass Experiment. Overall, estimates of genetic differentiation that were based on chloroplast DNA (cpDNA) and, which therefore resulted primarily from seed flow, were lower (average F(ST) = 0.058) than previously published estimates that were based on nuclear DNA (average F(ST) = 0.095). Unlike nuclear DNA, cpDNA showed no pattern of isolation by adaptation; cpDNA differentiation was, however, inversely correlated with the number of additions (nutrients and lime) that each plot had received. We suggest that natural selection is restricting pollen flow among plots, whereas nutrient additions are increasing seed flow and genetic diversity by facilitating the successful germination and growth of immigrant seeds. This study highlights the importance of considering all potential gene flow mechanisms when investigating determinants of spatial genetic structure, and cautions against the widespread assumption that pollen flow is more important than seed flow for population connectivity in wind-pollinated species.


Subject(s)
DNA, Chloroplast/genetics , Magnoliopsida/genetics , Pollen/genetics , Seeds/genetics , Amplified Fragment Length Polymorphism Analysis , Gene Flow , Haplotypes , Microsatellite Repeats
2.
Ecol Lett ; 12(2): 165-70, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19143828

ABSTRACT

We used the Park Grass Experiment, begun in 1856, to test alternative hypotheses about the relationship between genetic diversity and plant species diversity. The niche variation hypothesis predicts that populations with few interspecific competitors and hence broader niches are expected to contain greater genetic diversity. The coexistence hypothesis predicts that genetic diversity within species favours coexistence among species and therefore species and genetic diversity should be positively correlated. Amplified Fragment Length Polymorphism (AFLP) markers were used to measure the genetic diversity of populations of Anthoxanthum odoratum growing in 10 plots of differing species richness that lie along resource and soil pH gradients. Genetic diversity in A. odoratum was positively correlated with the number of resources added to a plot, but not correlated with species richness. However, separate analyses have shown a negative correlation between resource addition and species richness at Park Grass and elsewhere, so genetic and species diversity appear to respond in opposite directions.


Subject(s)
Biodiversity , Poaceae/genetics , Polymorphism, Genetic , Amplified Fragment Length Polymorphism Analysis , Genetic Markers , Hydrogen-Ion Concentration , Poaceae/physiology , Population Dynamics
3.
Am Nat ; 160(4): 409-20, 2002 Oct.
Article in English | MEDLINE | ID: mdl-18707519

ABSTRACT

The Park Grass Experiment (PGE) is the longest-observed set of experimental plant communities in existence. Although the gross composition of the vegetation was at equilibrium over the 60-yr period from 1920 to 1979, annual records show that individual species exhibited a range of dynamics. We tested two hypotheses to explain why some species initially increased and why subsequently some of these (the outbreak species) decreased again. The study was designed around eight phylogenetically independent contrasts (PICs), each containing related species with different dynamics. Our first hypothesis was that persistent increasers and outbreakers have higher intrinsic rates of natural increase than control species (species without trends), allowing them to spread when interspecific competition is reduced by drought. This was tested by measuring establishment and seed production of species in field experiments, with and without interspecific competition. Seed production in outbreak species responded more strongly to release from interspecific competition than it did in either of the other groups of species. Our second hypothesis was that outbreak species eventually declined because they lacked the genetic variation necessary to adapt to the novel habitats to which they had initially spread. We tested this by measuring mating systems and genetic diversity in persistent and outbreak species in the PGE. In seven out of seven PICs tested, the outbreak species was more selfing than its persistent relative. There was a significant positive correlation between outcrossing rate and gene diversity. These results support roles for both ecological and genetic traits in long-term dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...