Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
1.
Biol Rev Camb Philos Soc ; 98(5): 1668-1686, 2023 10.
Article in English | MEDLINE | ID: mdl-37157910

ABSTRACT

Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer.


Subject(s)
Neoplasms , Philosophy , Research , Interdisciplinary Studies
2.
J Cell Sci ; 135(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36239052

ABSTRACT

Growing evidence indicates that p53 (encoded by TP53) has a crucial role in normal tissue development. The role of the canonical p53 (p53α) and its 12 isoforms in development and homeostasis of healthy tissue remains poorly understood. Here, we demonstrate that the Δ133p53 isoforms, the three short isoforms of p53, respond specifically to laminin-111 and play an important regulatory role in formation of mammary organoids in concert with p53α. We demonstrate that down-modulation of Δ133p53 isoforms leads to changes in gene expression of the extracellular matrix molecules fibronectin (FN), EDA+-FN, laminin α5 and laminin α3 in human breast epithelial cells. These changes resulted in increased actin stress fibers and enhanced migratory behavior of cells in two-dimensional culture. We found that α5ß1-integrin coupled with the extracellularly deposited EDA+-FN activates the Akt signaling pathway in three-dimensional (3D) culture when Δ133p53 is dysregulated. Cells that do not express detectable Δ133p53 isoforms or express low levels of these isoforms failed to form polarized structures in 3D. These results uncover that Δ133p53 isoforms coordinate expression and deposition of organ-specific ECM molecules that are critical for maintenance of tissue architecture and function.


Subject(s)
Extracellular Matrix , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Morphogenesis/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Gene Expression
3.
Nat Cancer ; 3(1): 25-42, 2022 01.
Article in English | MEDLINE | ID: mdl-35121993

ABSTRACT

Although dormancy is thought to play a key role in the metastasis of breast tumor cells to the brain, our knowledge of the molecular mechanisms regulating disseminated tumor cell (DTC) dormancy in this organ is limited. Here using serial intravital imaging of dormant and metastatic triple-negative breast cancer lines, we identify escape from the single-cell or micrometastatic state as the rate-limiting step towards brain metastasis. We show that every DTC occupies a vascular niche, with quiescent DTCs residing on astrocyte endfeet. At these sites, astrocyte-deposited laminin-211 drives DTC quiescence by inducing the dystroglycan receptor to associate with yes-associated protein, thereby sequestering it from the nucleus and preventing its prometastatic functions. These findings identify a brain-specific mechanism of DTC dormancy and highlight the need for a more thorough understanding of tumor dormancy to develop therapeutic approaches that prevent brain metastasis.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Astrocytes/metabolism , Brain/metabolism , Breast Neoplasms/drug therapy , Female , Humans , Laminin/metabolism , Tumor Microenvironment
4.
Mol Oncol ; 16(1): 130-147, 2022 01.
Article in English | MEDLINE | ID: mdl-34058066

ABSTRACT

Dormant, disseminated tumor cells (DTCs) are thought to be the source of breast cancer metastases several years or even decades after initial treatment. To date, a selective therapy that leads to their elimination has not been discovered. While dormant DTCs resist chemotherapy, evidence suggests that this resistance is driven not by their lack of proliferation, but by their engagement of the surrounding microenvironment, via integrin-ß1-mediated interactions. Because integrin-ß1-targeted agents have not been translated readily to the clinic, signaling nodes downstream of integrin-ß1 could serve as attractive therapeutic targets in order to sensitize dormant DTCs to therapy. By probing a number of kinases downstream of integrin-ß1, we determined that PI3K inhibition with either a tool compounds or a compound (PF-05212384; aka Gedatolisib) in clinical trials robustly sensitizes quiescent breast tumor cells seeded in organotypic bone marrow cultures to chemotherapy. These results motivated the preclinical study of whether Gedatolisib-with or without genotoxic therapy-would reduce DTC burden and prevent metastases. Despite promising results in organotypic culture, Gedatolisib failed to reduce DTC burden or delay, reduce or prevent metastasis in murine models of either triple-negative or estrogen receptor-positive breast cancer dissemination and metastasis. This result held true whether analyzing Gedatolisib on its own (vs. vehicle-treated animals) or in combination with dose-dense doxorubicin and cyclophosphamide (vs. animals treated only with dose-dense chemotherapies). These data suggest that PI3K is not the node downstream of integrin-ß1 that confers chemotherapeutic resistance to DTCs. More broadly, they cast doubt on the strategy to target PI3K in order to eliminate DTCs and prevent breast cancer metastasis.


Subject(s)
Breast Neoplasms , Phosphatidylinositol 3-Kinases , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Humans , Integrins , Mice , Morpholines , Phosphoinositide-3 Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases , Triazines , Tumor Microenvironment
5.
Semin Cancer Biol ; 78: 35-44, 2022 01.
Article in English | MEDLINE | ID: mdl-34757184

ABSTRACT

Recent advancements in the field of cancer have established that the process of metastasis is organ-specific with tumor cell dissemination occurring in the very early stages of disease. Pre-metastatic niches are actively remodeled and transformed by both primary tumor specific factors and by influences from the extracellular matrix.Although improvements in cancer therapies have significantly improved outcomes in patients with early stage disease, the risk of recurrence and relapse leading to mortality remains high. Recent studies have emerged highlighting the influence of dormant tumor cells and exosomes as key players in cancer relapse. In this review we discuss the critical mediators of tumor progression and their link to cancer dormancy, while also exploring possible therapeutics for targeting relapse.


Subject(s)
Exosomes/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Tumor Microenvironment , Animals , Disease Progression , Disease Susceptibility , Humans , Neoplasms/etiology , Recurrence
6.
Front Cell Dev Biol ; 9: 692269, 2021.
Article in English | MEDLINE | ID: mdl-34235154

ABSTRACT

The essential actin-binding factor profilin-1 (Pfn1) is a non-classical tumor suppressor with the abilities toboth inhibit cellular proliferation and augment chemotherapy-induced apoptosis. Besides actin, Pfn1 interacts with proteins harboring the poly-L-proline (PLP) motifs. Our recent work demonstrated that both nuclear localization and PLP-binding are required for tumor growth inhibition by Pfn1, and this is at least partially due to Pfn1 association with the PLP-containing ENL protein in the Super Elongation Complex (SEC) and the transcriptional inhibition of pro-cancer genes. In this paper, by identifying a phosphorylation event of Pfn1 at Ser71 capable of inhibiting its actin-binding and nuclear export, we provide in vitro and in vivo evidence that chemotherapy-induced apoptotic sensitization by Pfn1 requires its cytoplasmic localization and actin-binding. With regard to tumor growth inhibition byPfn1, our data indicate a requirement for dynamic actin association and dissociation rendered by reversible Ser71phosphorylation and dephosphorylation. Furthermore, genetic and pharmacological experiments showed that Ser71 of Pfn1 can be phosphorylated by protein kinase A (PKA). Taken together, our data provide novel mechanistic insights into the multifaceted anticancer activities of Pfn1 and how they are spatially-defined in the cell and differentially regulated by ligand-binding.

8.
J Vis Exp ; (163)2020 09 28.
Article in English | MEDLINE | ID: mdl-33044462

ABSTRACT

Laminin-111 (Ln1) is an essential part of the extracellular matrix in epithelia, muscle and neural systems. We have previously demonstrated that the microstructure of Ln1 alters the way that it signals to cells, possibly because Ln1 assembly into networks exposes different adhesive domains. In this protocol, we describe three methods to generate polymerized Ln1.


Subject(s)
Laminin/metabolism , Signal Transduction , Extracellular Matrix/metabolism , Fractals , Laminin/chemistry , Polymerization
9.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165960, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32919034

ABSTRACT

The role of "aerobic glycolysis" in cancer has been examined often in the past. Results from those studies, most of which were performed on two dimensional conditions (2D, tissue culture plastic), demonstrate that aerobic glycolysis occurs as a consequence of oncogenic events. These oncogenic events often drive malignant cell growth and survival. Although 2D based experiments are useful in elucidating the molecular mechanisms of oncogenesis, they fail to take contributions of the extracellular microenvironment into account. Indeed we, and others, have shown that the cellular microenvironment is essential in regulating processes that induce and/or suppress the malignant phenotype/properties. This regulation between the cell and its microenvironment is both dynamic and reciprocal and involves the integration of cellular signaling networks in the right context. Therefore, given our previous demonstration of the effect of the microenvironment including tissue architecture and media composition on gene expression and the integration of signaling events observed in three-dimension (3D), we hypothesized that glucose uptake and metabolism must also be essential components of the tissue's signal "integration plan" - that is, if uptake and metabolism of glucose were hyperactivated, the canonical oncogenic pathways should also be similarly activated. This hypothesis, if proven true, suggests that direct inhibition of glucose metabolism in cancer cells should either suppress or revert the malignant phenotype in 3D. Here, we review the up-to-date progress that has been made towards understanding the role that glucose metabolism plays in oncogenesis and re-establishing basally polarized acini in malignant human breast cells.


Subject(s)
Carcinogenesis , Glucose/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Tumor Microenvironment , Gene Expression Regulation, Neoplastic/genetics , Humans , Neoplasms/genetics , Phenotype , Signal Transduction/genetics , Tumor Microenvironment/genetics
10.
Cells ; 9(9)2020 09 11.
Article in English | MEDLINE | ID: mdl-32932770

ABSTRACT

To investigate the role of PR isoforms on the homeostasis of stem cells in the normal and neoplastic mammary gland, we used PRA and PRB transgenic mice and the T47D human breast cancer cell line and its derivatives, T47D YA and YB (manipulated to express only PRA or PRB, respectively). Flow cytometry and mammosphere assays revealed that in murine breast, overexpression of PRB leads to an increase in luminal and basal progenitor/stem cells. Ovariectomy had a negative impact on the luminal compartment and induced an increase in mammosphere-forming capacity in cells derived from WT and PRA mice only. Treatment with ICI 182,780 augmented the mammosphere-forming capacity of cells isolated from WT and PRA mice, whilst those from PRB remained unaltered. T47D YB cells showed an increase in the CD44+/CD24Low/- subpopulation; however, the number of tumorspheres did not vary relative to T47D and YA, even though they were larger, more irregular, and had increased clonogenic capacity. T47D and YA tumorspheres were modulated by estrogen/antiestrogens, whereas YB spheres remained unchanged in size and number. Our results show that alterations in PR isoform balance have an impact on normal and tumorigenic breast progenitor/stem cells and suggest a key role for the B isoform, with implications in response to antiestrogens.


Subject(s)
Breast Neoplasms/genetics , Protein Isoforms/metabolism , Receptors, Progesterone/metabolism , Animals , Breast Neoplasms/metabolism , Female , Humans , Mice , Mice, Transgenic , Stem Cells/metabolism
11.
Front Microbiol ; 11: 1742, 2020.
Article in English | MEDLINE | ID: mdl-32793173

ABSTRACT

The rhizosphere microbiome (rhizobiome) plays a critical role in plant health and development. However, the processes by which the constituent microbes interact to form and maintain a community are not well understood. To investigate these molecular processes, we examined pairwise interactions between 11 different microbial isolates under select nutrient-rich and nutrient-limited conditions. We observed that when grown with media supplemented with 56 mM glucose, two microbial isolates were able to inhibit the growth of six other microbes. The interaction between microbes persisted even after the antagonistic microbe was removed, upon exposure to spent media. To probe the genetic basis for these antagonistic interactions, we used a barcoded transposon library in a proxy bacterium, Pseudomonas putida, to identify genes which showed enhanced sensitivity to the antagonistic factor(s) secreted by Acinetobacter sp. 02. Iron metabolism-related gene clusters in P. putida were implicated by this systems-level analysis. The supplementation of iron prevented the antagonistic interaction in the original microbial pair, supporting the hypothesis that iron limitation drives antagonistic microbial interactions between rhizobionts. We conclude that rhizobiome community composition is influenced by competition for limiting nutrients, with implications for growth and development of the plant.

12.
Cell Syst ; 11(2): 161-175.e5, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32726596

ABSTRACT

Intratumoral heterogeneity is associated with aggressive tumor behavior, therapy resistance, and poor patient outcomes. Such heterogeneity is thought to be dynamic, shifting over periods of minutes to hours in response to signaling inputs from the tumor microenvironment. However, models of this process have been inferred from indirect or post-hoc measurements of cell state, leaving the temporal details of signaling-driven heterogeneity undefined. Here, we developed a live-cell model system in which microenvironment-driven signaling dynamics can be directly observed and linked to variation in gene expression. Our analysis reveals that paracrine signaling between two cell types is sufficient to drive continual diversification of gene expression programs. This diversification emerges from systems-level properties of the EGFR-RAS-ERK signaling cascade, including intracellular amplification of amphiregulin-mediated paracrine signals and differential kinetic filtering by target genes including Fra-1, c-Myc, and Egr1. Our data enable more precise modeling of paracrine-driven transcriptional variation as a generator of gene expression heterogeneity. A record of this paper's transparent peer review process is included in the Supplemental Information.


Subject(s)
Gene Expression/genetics , MAP Kinase Signaling System/genetics , ErbB Receptors/metabolism , Humans , Signal Transduction
13.
Nat Commun ; 10(1): 4182, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31519911

ABSTRACT

Myoepithelial cells play key roles in normal mammary gland development and in limiting pre-invasive to invasive breast tumor progression, yet their differentiation and perturbation in ductal carcinoma in situ (DCIS) are poorly understood. Here, we investigated myoepithelial cells in normal breast tissues of BRCA1 and BRCA2 germline mutation carriers and in non-carrier controls, and in sporadic DCIS. We found that in the normal breast of non-carriers, myoepithelial cells frequently co-express the p63 and TCF7 transcription factors and that p63 and TCF7 show overlapping chromatin peaks associated with differentiated myoepithelium-specific genes. In contrast, in normal breast tissues of BRCA1 mutation carriers the frequency of p63+TCF7+ myoepithelial cells is significantly decreased and p63 and TCF7 chromatin peaks do not overlap. These myoepithelial perturbations in normal breast tissues of BRCA1 germline mutation carriers may play a role in their higher risk of breast cancer. The fraction of p63+TCF7+ myoepithelial cells is also significantly decreased in DCIS, which may be associated with invasive progression.


Subject(s)
BRCA1 Protein/metabolism , BRCA2 Protein/metabolism , Carcinoma, Ductal, Breast/metabolism , Mutation/genetics , Animals , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Carcinoma, Ductal, Breast/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/physiology , Female , Fluorescent Antibody Technique , Germ-Line Mutation/genetics , Humans , Immunohistochemistry , Mice , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
14.
Adv Cancer Res ; 144: 315-341, 2019.
Article in English | MEDLINE | ID: mdl-31349902

ABSTRACT

Since the introduction of the cancer stem cell (CSC) hypothesis, accumulating evidence shows that most cancers present stem-like niches. However, therapies aimed at targeting this niche have not been as successful as expected. New evidence regarding CSCs hierarchy, similarities with normal tissue stem cells and cell plasticity might be key in understanding their role in cancer biology and how to efficiently eliminate them. In this Chapter, we discuss what is known in breast and prostate CSCs from their initial discoveries to the current therapeutic efforts in the field. Future challenges towards better CSC identification and isolation strategies will be key to shed light into how CSCs could accurately be targeted in combination to traditional therapies to ultimately prolong patient survival.


Subject(s)
Breast Neoplasms/pathology , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/pathology , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Female , Humans , Male , Molecular Targeted Therapy , Prostatic Neoplasms/drug therapy , Stem Cell Niche
15.
Environ Toxicol Chem ; 38(9): 1911-1922, 2019 09.
Article in English | MEDLINE | ID: mdl-31107972

ABSTRACT

Advances in engineering biology have expanded the list of renewable compounds that can be produced at scale via biological routes from plant biomass. In most cases, these chemical products have not been evaluated for effects on biological systems, defined in the present study as bioactivity, that may be relevant to their manufacture. For sustainable chemical and fuel production, the industry needs to transition from fossil to renewable carbon sources, resulting in unprecedented expansion in the production and environmental distribution of chemicals used in biomanufacturing. Further, although some chemicals have been assessed for mammalian toxicity, environmental and agricultural hazards are largely unknown. We assessed 6 compounds that are representative of the emerging biofuel and bioproduct manufacturing process for their effect on model plants (Arabidopsis thaliana, Sorghum bicolor) and show that several alter plant seedling physiology at submillimolar concentrations. However, these responses change in the presence of individual bacterial species from the A. thaliana root microbiome. We identified 2 individual microbes that change the effect of chemical treatment on root architecture and a pooled microbial community with different effects relative to its constituents individually. The present study indicates that screening industrial chemicals for bioactivity on model organisms in the presence of their microbiomes is important for biologically and ecologically relevant risk analyses. Environ Toxicol Chem 2019;38:1911-1922. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Subject(s)
Arabidopsis/drug effects , Biofuels , Ecotoxicology/methods , Rhizobium/growth & development , Soil Pollutants/toxicity , Sorghum/drug effects , Agriculture , Arabidopsis/growth & development , Biomass , Plant Roots/microbiology , Sorghum/growth & development
16.
Infect Immun ; 86(11)2018 11.
Article in English | MEDLINE | ID: mdl-30181350

ABSTRACT

Tissues and organs provide the structural and biochemical landscapes upon which microbial pathogens and commensals function to regulate health and disease. While flat two-dimensional (2-D) monolayers composed of a single cell type have provided important insight into understanding host-pathogen interactions and infectious disease mechanisms, these reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, and physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review selected 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the rotating wall vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models, and organ-on-a-chip (OAC) models. Collectively, these technologies provide a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial therapies at the intersection of the host, microbe, and their local microenvironments.


Subject(s)
Cellular Microenvironment , Host-Pathogen Interactions , Intestinal Mucosa/physiology , Organ Culture Techniques/methods , Organoids , Tissue Engineering/methods , History, 20th Century , History, 21st Century , Humans , Models, Biological , Organ Culture Techniques/history , Tissue Engineering/history
17.
J Cell Biol ; 217(8): 2777-2798, 2018 08 06.
Article in English | MEDLINE | ID: mdl-29980625

ABSTRACT

Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general. Using biochemical approaches and superresolution microscopy, we show that estrogen drives membrane ERα into endosomes in breast cancer cells and that its fate is determined by the presence of fibronectin (FN) in the extracellular matrix; it is trafficked to lysosomes in the absence of FN and avoids the lysosomal compartment in its presence. In this context, FN prolongs ERα half-life and strengthens its transcriptional activity. We show that ERα is associated with ß1-integrin at the membrane, and this integrin follows the same endocytosis and subcellular trafficking pathway triggered by estrogen. Moreover, ERα+ vesicles are present within human breast tissues, and colocalization with ß1-integrin is detected primarily in tumors. Our work unravels a key, clinically relevant mechanism of microenvironmental regulation of ERα signaling.


Subject(s)
Estrogen Receptor alpha/metabolism , Fibronectins/physiology , Lysosomes/metabolism , Cell Line, Tumor , Endosomes/metabolism , Extracellular Matrix/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Humans , Integrin beta1/metabolism , MCF-7 Cells , Models, Biological , Protein Transport , Proteolysis , Tumor Microenvironment
18.
Oncogene ; 37(42): 5605-5617, 2018 10.
Article in English | MEDLINE | ID: mdl-29907768

ABSTRACT

We demonstrated previously that the splicing of the actin regulator, hMENA, generates two alternatively expressed isoforms, hMENA11a and hMENAΔv6, which have opposite functions in cell invasiveness. Their mechanisms of action have remained unclear. Here we report two major findings: (i) hMENA regulates ß1 integrin expression. This was shown by depleting total hMENA, which led to loss of nuclear expression of serum response factor (SRF)-coactivator myocardin-related transcription factor 1 (MRTF-A), leading to an increase in the G-actin/F-actin ratio crucial for MRTF-A localization. This in turn inhibited SRF activity and the expression of its target gene ß1 integrin. (ii) hMENA11a reduces and hMENAΔv6 increases ß1 integrin activation and signaling. Moreover, exogenous expression of hMENA11a in hMENAΔv6-positive cancer cells dramatically reduces secretion of extracellular matrix (ECM) components, including ß1 integrin ligands and metalloproteinases. On the other hand, overexpression of the pro-invasive hMENAΔv6 increases fibronectin production. In primary tumors high hMENA11a correlates with low stromal fibronectin and a favorable clinical outcome of early node-negative non-small-cell lung cancer patients. These data provide new insights into the roles of hMENA11a and hMENAΔv6 in the druggable ß1 integrin-ECM signaling axis and allow stratification of patient risk, guiding their clinical management.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Fibronectins/metabolism , Integrin beta1/metabolism , Lung Neoplasms/pathology , Microfilament Proteins/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Gene Expression Regulation, Neoplastic/physiology , Humans , Lung Neoplasms/metabolism , Protein Isoforms , Signal Transduction , Tumor Microenvironment/physiology
19.
Elife ; 72018 03 21.
Article in English | MEDLINE | ID: mdl-29560858

ABSTRACT

Non-malignant breast epithelial cells cultured in three-dimensional laminin-rich extracellular matrix (lrECM) form well organized, growth-arrested acini, whereas malignant cells form continuously growing disorganized structures. While the mechanical properties of the microenvironment have been shown to contribute to formation of tissue-specific architecture, how transient external force influences this behavior remains largely unexplored. Here, we show that brief transient compression applied to single malignant breast cells in lrECM stimulated them to form acinar-like structures, a phenomenon we term 'mechanical reversion.' This is analogous to previously described phenotypic 'reversion' using biochemical inhibitors of oncogenic pathways. Compression stimulated nitric oxide production by malignant cells. Inhibition of nitric oxide production blocked mechanical reversion. Compression also restored coherent rotation in malignant cells, a behavior that is essential for acinus formation. We propose that external forces applied to single malignant cells restore cell-lrECM engagement and signaling lost in malignancy, allowing them to reestablish normal-like tissue architecture.


Subject(s)
Breast/metabolism , Epithelial Cells/metabolism , Nitric Oxide/metabolism , Stress, Mechanical , Acinar Cells/drug effects , Acinar Cells/metabolism , Breast/cytology , Breast/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line , Cell Line, Tumor , Epithelial Cells/drug effects , Extracellular Matrix/metabolism , Humans , Laminin/metabolism , Laminin/pharmacology , Microscopy, Confocal , Signal Transduction/drug effects , Time-Lapse Imaging/methods
20.
Elife ; 72018 03 21.
Article in English | MEDLINE | ID: mdl-29560860

ABSTRACT

How mammalian tissues maintain their architecture and tissue-specificity is poorly understood. Previously, we documented both the indispensable role of the extracellular matrix (ECM) protein, laminin-111 (LN1), in the formation of normal breast acini, and the phenotypic reversion of cancer cells to acini-like structures in 3-dimensional (3D) gels with inhibitors of oncogenic pathways. Here, we asked how laminin (LN) proteins integrate the signaling pathways necessary for morphogenesis. We report a surprising reciprocal circuitry comprising positive players: laminin-5 (LN5), nitric oxide (NO), p53, HOXD10 and three microRNAs (miRNAs) - that are involved in the formation of mammary acini in 3D. Significantly, cancer cells on either 2-dimensional (2D) or 3D and non-malignant cells on 2D plastic do not produce NO and upregulate negative players: NFκB, EIF5A2, SCA1 and MMP-9 - that disrupt the network. Introducing exogenous NO, LN5 or individual miRNAs to cancer cells reintegrates these pathways and induces phenotypic reversion in 3D. These findings uncover the essential elements of breast epithelial architecture, where the balance between positive- and negative-players leads to homeostasis.


Subject(s)
Breast/drug effects , Homeostasis/drug effects , Laminin/pharmacology , MicroRNAs/genetics , Nitric Oxide/metabolism , Tumor Suppressor Protein p53/genetics , Acinar Cells/drug effects , Acinar Cells/metabolism , Breast/cytology , Breast/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line , Cell Line, Tumor , Gene Expression Profiling/methods , Homeostasis/genetics , Humans , Laminin/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...