Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Neurosci Lett ; 761: 136104, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34256105

ABSTRACT

AIMS: Oxandrolone (OXA) is a synthetic steroid used for the treatment of clinical conditions associated with catabolic states in humans, including children. However, its behavioral effects are not well known. Our goal was to evaluate the anxiety-like behavior induced in young adult rats after the treatment of juvenile animals with OXA. METHODS: Four-week-old male rats were separated into three groups: Control (CON), therapeutic-like OXA dose (TD), and excessive OXA dose (ED), in which 2.5 and 37.5 mg/kg/day of OXA were administered via gavage for four weeks for TD and ED, respectively. Behavior was evaluated through the elevated plus maze (EPM) and open field (OF) tests. Protein expression of catalase (CAT), superoxide dismutase (SOD), Tumor necrosis factor-α (TNF-α), and dopamine receptor 2 (DrD2) were analyzed in tissue samples of the hippocampus, amygdala, and prefrontal cortex by Western Blot. RESULTS: OXA induced anxiety-like behaviors in both TD and ED animals; it decreased the time spent in the open arms of the EPM in both groups and reduced the time spent in the central zone of the OF in the TD group. In the hippocampus, CAT expression was higher in TD compared with both control and ED animals. No differences were found in the amygdala and prefrontal cortex. TNF-α, SOD, and DrD2 levels were not altered in any of the assessed areas. CONCLUSIONS: Treatment of juvenile rats with OXA led to anxiety-like behavior in young adult animals regardless of the dose used, with minor changes in the antioxidant machinery located in the hippocampus.


Subject(s)
Anabolic Agents/toxicity , Anxiety/etiology , Hippocampus/drug effects , Oxandrolone/toxicity , Anabolic Agents/administration & dosage , Animals , Catalase/metabolism , Hippocampus/growth & development , Hippocampus/metabolism , Male , Oxandrolone/administration & dosage , Rats , Rats, Wistar , Receptors, Dopamine D2/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Toxicon ; 185: 5-14, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32569848

ABSTRACT

Cardiovascular effects induced by snake venoms, in spite of having a crucial role in the outcome of the envenomation, have been less studied than other toxic activities displayed by these venoms. In this study we evaluated acute cardiovascular responses to Bothrops leucurus venom - Bl-V - both in vivo, in anesthetized rats, and in vitro, in isolated rat mesenteric resistance arteries. Bl-V (10-100 µg protein/kg) caused dose-dependent hypotension, followed by gradual recovery (2-20 min) to basal levels, and induced dose-dependent (1-20 µg/mL) vasodilation in pre-contracted arteries, what was more pronounced when the endothelium remained intact. These effects were partially counteracted by pre-treatment with indomethacin (cyclooxygenase inhibitor). Prior incubation of Bl-V with commercial pentavalent Bothrops antivenom also attenuated the cardiovascular effects induced by the venom, in spite of it not being among the venoms used for the development of the bothropic antivenom. Through an approach based on two chromatographic steps and mass spectrometry (MALDI-ToF and MALDI-ISD), a component with acute cardiovascular effects was isolated and identified as the basic phospholipase blD-PLA2, previously purified from the venom of B. leucurus. Taken together, our results show that, at low doses, the venom of B. leucurus induces transient, acute hypotension in anesthetized rats following systemic vasodilation in a dose-dependent way. In addition, we provide clear evidence of the involvement of the enzymatic activity of blD-PLA2 in this cardiovascular response, acting via the production of vasodilating prostanoids.


Subject(s)
Bothrops , Crotalid Venoms/toxicity , Phospholipases A2/metabolism , Animals , Hypotension/chemically induced , Rats , Snake Venoms
3.
Curr Pharm Des ; 26(30): 3711-3722, 2020.
Article in English | MEDLINE | ID: mdl-32228420

ABSTRACT

BACKGROUND: Endothelial dysfunction is commonly present in estrogen-deficient states, e.g., after menopause. In the search for alternatives to hormone replacement therapy (HRT), treatments based on phytoestrogens or in non-hormonal mechanisms have been under evaluation. OBJECTIVE: Here we aim to present an overview of innovative potential treatments for endothelial dysfunction in estrogen-deficient states, introducing our own preliminary data about the probiotic kefir. METHODS: We conducted a review based on a PubMed database search for keywords of interest (Menopause, Ovariectomy, Vascular dysfunction, Hot flashes, Metformin, Statins, Phytoestrogens, Omega-3, Vitamin D, Probiotics). RESULTS: Vascular parameters were found to be improved by both metformin and statins through pleiotropic effects, being related to a decrease in oxidative stress and restoration of the nitric oxide pathway. Phytoestrogens such as genistein and resveratrol have also been shown to improve vascular dysfunction, which seems to involve their estrogenic-like actions. Omega-3, vitamin D and its analogues, as well as probiotics, have shown similar vascular beneficial effects in both postmenopausal women and an animal model of ovariectomy (OVX), which could be related to antioxidant and/or anti-inflammatory effects. Moreover, our preliminary data on the probiotic kefir treatment in OVX rats suggested a vascular antioxidant effect. In particular, some evidence points to statins and vitamin D having anti-atherogenic effects. CONCLUSION: Pleiotropic effects of common medications and natural compounds could have therapeutic potential for endothelial dysfunction in estrogen-deficient states. They could, therefore, work as future complementary or alternative treatments to HRT.


Subject(s)
Pharmaceutical Preparations , Probiotics , Animals , Estrogens , Female , Humans , Nutrients , Ovariectomy , Phytoestrogens/pharmacology , Rats
4.
Nutr Metab Cardiovasc Dis ; 30(2): 274-281, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31653514

ABSTRACT

BACKGROUND AND AIMS: Metformin has been known to promote cardiovascular benefits in humans and animal models, even in non-diabetic subjects. However, its chronic effects on hypertension-related autonomic dysfunction remain poorly understood. Therefore, we evaluate the cardiac autonomic effects of chronic metformin in hypertensive rats. METHODS AND RESULTS: Twelve-week-old male SHR and Wistar rats were separated into 3 groups: WN (Wistar normotensive); SC (SHR hypertensive control); and SM (SHR: Metformin 300 mg/kg/day for 30 days). Spontaneous and induced (by phenylephrine and sodium nitroprusside) baroreflexes were analysed in catheterised rats. Next, cardiac autonomic tone was evaluated through heart rate shift by atropine (parasympathetic) or atenolol (sympathetic). Plasma TNFα was assessed by ELISA. Western blot analyses of inflammatory, oxidant and antioxidant proteins were performed. Cardiac parasympathetic tone and baroreflex function were lower in SC than in WN, whereas cardiac sympathetic tone was higher. Metformin treatment in non-diabetic hypertensive rats reduced the resting heart rate, attenuated the cardiac sympathetic tone and improved baroreflex (especially in the offsetting of rising BP), while blood pressure and glycaemia remained unchanged. Cardiac sympathetic tone correlated negatively with spontaneous baroreflex. Metformin reduced plasma TNFα levels and decreased tissue expression of COX2 and NOX2 (which were positively correlated), without affecting SOD1 and SOD2. CONCLUSION: Chronic metformin presented anti-inflammatory and antioxidant effects and, independently of alterations in glycaemia, it improved cardiac autonomic parameters that are impaired in hypertension, being related to end-organ damage and mortality. These findings open up perspectives for future innovative uses of metformin in cardiovascular diseases, especially in hypertension.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antihypertensive Agents/pharmacology , Autonomic Nervous System/drug effects , Baroreflex/drug effects , Heart/innervation , Hypertension/drug therapy , Inflammation Mediators/blood , Metformin/pharmacology , Animals , Antioxidants/metabolism , Autonomic Nervous System/metabolism , Autonomic Nervous System/physiopathology , Biomarkers/blood , Blood Pressure/drug effects , Disease Models, Animal , Down-Regulation , Heart Rate/drug effects , Hypertension/blood , Hypertension/physiopathology , Male , Rats, Inbred SHR , Rats, Wistar
5.
J Nutr Biochem ; 66: 79-85, 2019 04.
Article in English | MEDLINE | ID: mdl-30776608

ABSTRACT

This work evaluated the effects of long-term kefir treatment in cardiac function (cardiac contractility and calcium-handling proteins) and the central nervous system (CNS) control of the sympathetic signaling in spontaneously hypertensive rats (SHR). Male normotensive rats [Wistar Kyoto rats (WKYs)] and SHRs were divided into three groups: WKYs and SHRs treated with vehicle, and SHRs treated with milk fermented by the grains of kefir (5%; SHR-Kefir; oral gavage, 0.3 ml/100 g daily/9 weeks). At the end of treatment, mean arterial pressure (MAP) and heart rate (HR) were measured by direct arterial catheterization. Hemodynamic parameters (left ventricular systolic pressure, left ventricular isovolumetric relaxation time constant, maximal and minimal pressure decay) were acquired through a left ventricular catheter implantation. Left ventricle protein expressions of phospholamban (PLB), its phosphorylated form (p-PLB) and sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) were determined by Western blot. Tyrosine hydroxylase (TH) protein expression was evaluated via immunofluorescence within the paraventricular nucleus (PVN) of the hypothalamus and the rostral ventrolateral medulla (RVLM). SHR-Kefir group presented lower MAP and HR compared to SHRs. Kefir treatment ameliorated cardiac hypertrophy and promoted reduced expression of PLB, p-PLB and SERCA2a contractile proteins. Within the PVN and RVML, TH protein overexpression observed in SHRs was reduced by probiotic treatment. In addition, kefir improved cardiac hemodynamic parameters in SHR-treated animals. Altogether, the data show that long-term kefir treatment reduced blood pressure by mechanisms involving reduction of cardiac hypertrophy, improvement of cardiac contractility and calcium-handling proteins, and reduction in the CNS regulation of the sympathetic activity.


Subject(s)
Hypertension/physiopathology , Kefir , Probiotics/pharmacology , Animals , Blood Pressure , Calcium-Binding Proteins/metabolism , Cardiomegaly/physiopathology , Cardiomegaly/therapy , Heart Rate , Heart Ventricles/metabolism , Hypertension/therapy , Male , Paraventricular Hypothalamic Nucleus/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
6.
Life Sci ; 208: 239-245, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30040952

ABSTRACT

AIMS: Hypertension is a highly prevalent disease that has been correlated to severe organ damage and mortality. However, the role of androgens in hypertension is controversial. The aim of this study was to evaluate the cardiac effects of the nandrolone decanoate (NDL) in male SHR. MAIN METHODS: At 12 weeks of age, male SHR rats were separated into three groups: Control (CON), Nandrolone 10 mg/kg twice weekly (NDL), and NDL plus Enalapril 10 mg/kg/day (NDL-E) groups. The animals were treated for 4 weeks. Haemodynamic parameters were acquired through ventricular catheter implantation. The left ventricle was stained with haematoxylin/eosin or picrosirius red. Western blot analysis of TNF-α, ACE, AT1R, ß1-AR, PLB, p-PLBser16 and SERCA2a was performed. KEY FINDINGS: Nandrolone increased hypertension in SHR rats and enalapril reduced blood pressure to values below those of the control. NDL increased +dP/dtmax, -dP/dtmax and cardiac hypertrophy, which were prevented in the NDL-E group. Cardiac collagen deposition was increased in the NDL group, with this effect being attenuated by enalapril in NDL-E animals. TNF-α, ACE, AT1R and ß1-AR proteins were increased in the NDL, and enalapril decreased them, except for TNF-α. The ratio p-PLBser16/PLB revealed an increase after nandrolone, which was prevented in the NDL-E group. The SERCA2a expression protein and SERCA2a/PLB were increased in NDL animals, which did not occur in the NDL-E group. SIGNIFICANCE: Nandrolone has distinct effects on cardiac function and remodelling in male SHR, altering the hypertension development process in the heart through modulation of calcium handling proteins and the renin-angiotensin system.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium/metabolism , Muscle Contraction/drug effects , Nandrolone/pharmacology , Renin-Angiotensin System/drug effects , Ventricular Dysfunction, Left/drug therapy , Ventricular Remodeling/drug effects , Anabolic Agents/pharmacology , Animals , Heart Rate , Male , Rats , Rats, Inbred SHR , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
7.
Pharmacol Rep ; 69(4): 798-805, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28591668

ABSTRACT

BACKGROUND: The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen are used for the treatment of osteoporosis and cancer, respectively, in women. The impairment of both the Atrial Natriuretic Peptide (ANP) cell signaling system and the translocation of nuclear factor-kappa B (NF-kB) to the cell nucleus are associated with detrimental cardiovascular effects and inflammation. The effects of SERMs on these parameters in the cardiac tissue of estrogen-deficient rats has not been reported. METHODS: We investigated the effects of raloxifene and tamoxifen on ANP signaling, p65 NF-kB nuclear translocation, cardiac histology and contractility. Female rats were divided into five groups: control (SHAM), ovariectomized (OVX), OVX-treated 17-ß-estradiol (E), OVX-treated raloxifene (RLX) and OVX-treated tamoxifen (TAM). The treatments started 21days after ovariectomy and continued for 14days. RESULTS: Ovariectomy reduced ANP mRNA in the left atrium (LA), decreased the content of ANP protein in the LA and in plasma, and increased the level of p65 NF-kB nuclear translocation in the left ventricle. Both 17-ß-estradiol and SERMs were able to reverse these alterations, which were induced by the estrogen deficient state. The hemodynamic and cardiac structural parameters analyzed in the present work were not modified by the interventions. CONCLUSIONS: Our study demonstrates, for the first time, the additional benefits of raloxifene and tamoxifen in an estrogen-deficient state. These include the normalization of plasmatic and cardiac ANP levels and cardiac p65 NF-kB translocation. Therefore, these treatments promote cardiovascular protection and may contribute to the prevention of cardiac dysfunction observed long-term in postmenopausal women.


Subject(s)
Atrial Natriuretic Factor/metabolism , Estrogens/metabolism , NF-kappa B/metabolism , Raloxifene Hydrochloride/pharmacology , Tamoxifen/pharmacology , Active Transport, Cell Nucleus/drug effects , Animals , Atrial Natriuretic Factor/genetics , Body Weight , Female , Heart , Hemodynamics/drug effects , Myocardium/metabolism , Organ Size/drug effects , Ovariectomy , Rats , Selective Estrogen Receptor Modulators/pharmacology , Uterus/drug effects
8.
J Nutr Biochem ; 48: 21-28, 2017 10.
Article in English | MEDLINE | ID: mdl-28654829

ABSTRACT

Chronic fructose intake induces major cardiovascular and metabolic disturbances and is associated with the development of hypertension due to changes in vascular function. We hypothesized that high fructose intake for 6 weeks would cause metabolic syndrome and lead to initial vascular dysfunction. Male Wistar rats were assigned to receive fructose (FRU, 10%) or drinking water (CON) for 6 weeks. Systolic blood pressure was evaluated by tail plethysmography. Fasting glucose, insulin and glucose tolerance were measured at the end of the follow-up. Mesenteric vascular bed reactivity was tested before and after pharmacological blockade. Western blot analysis was performed for iNOS, eNOS, Nox2 and COX-2. DHE staining was used for vascular superoxide anion detection. Vessel structure was evaluated by optical and electronic microscopy. Fructose intake did not alter blood pressure, but did increase visceral fat deposition and fasting glucose as well as impair insulin and glucose tolerance. Fructose increased NE-induced vasoconstriction compared with CON, and this difference was abrogated by indomethacin perfusion as well as endothelium removal. ACh-induced relaxation was preserved, and the NO modulation tested after L-NAME perfusion was similar between groups. SNP-induced relaxation was not altered. Inducible NOS was increased; however, there were no changes in eNOS, Nox2 or COX-2 protein expression. Basal or stimulated superoxide anion production was not changed by fructose intake. In conclusion, high fructose intake increased NE-induced vasoconstriction through the endothelial prostanoids even in the presence of a preserved endothelium-mediated relaxation. No major changes in vessel structure were detected.


Subject(s)
Endothelium, Vascular/drug effects , Fructose/adverse effects , Norepinephrine/pharmacology , Prostaglandins/metabolism , Animals , Blood Pressure/drug effects , Body Weight/drug effects , Endothelium, Vascular/metabolism , Male , Mesenteric Arteries/drug effects , Rats, Wistar , Superoxides/metabolism , Vasoconstrictor Agents/pharmacology
9.
Steroids ; 120: 7-18, 2017 04.
Article in English | MEDLINE | ID: mdl-28192127

ABSTRACT

Nandrolone Decanoate (ND) is an Anabolic Androgenic Steroid (AAS) that under abusive regimen can lead to multiple physiological adverse effects. Studies of AAS-mediated cardiovascular (CV) alterations were mostly taken from male subjects, even though women are also susceptible to the effects of AAS and gender-specific differences in susceptibility to vascular diseases exist. Here we investigate ND-induced vascular reactivity alterations in both sedentary and exercised female rats and whether these alterations depend on endothelium-derived factors. We show that chronic exposure of female Wistar rats to ND (20mg/Kg/week for 4weeks) impaired the vascular mesenteric bed (MVB) reactivity to vasodilator (acetylcholine) agonist. The endothelium-dependent Nitric Oxide (NO) component was reduced in ND-treated rats, whereas neither the endothelium-derived hyperpolarizing factor (EDHF) component nor prostanoids were altered in the MVBs. Endothelial dysfunction observed in ND-treated rats was associated with decreased eNOS (Ser1177) and Akt (Ser473) phosphorylation sites and upregulation of iNOS and NADPH oxidase expression. Exercise training by weight lifting in water did not improve the vascular alterations induced by ND treatment. ND treatment also significantly reduced the serum levels of estradiol in females, overriding its CV protective effect. These results help uncover the role of ND modulating endothelial function in the setting of CV disease caused by the abuse of AAS in females. If this translates to humans, young women abusing AAS can potentially lose the cardio protective effect rendered by estrogen and be more susceptible to CV alterations.


Subject(s)
Anabolic Agents/pharmacology , Nandrolone/analogs & derivatives , Physical Conditioning, Animal/physiology , Adiposity/drug effects , Animals , Biological Factors/metabolism , Eating/drug effects , Female , Mesenteric Arteries/drug effects , Models, Biological , NADPH Oxidases/metabolism , Nandrolone/pharmacology , Nandrolone Decanoate , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Prostaglandins/metabolism , Rats , Rats, Wistar , Vasodilation/drug effects , Weight Gain/drug effects
10.
Peptides ; 87: 41-49, 2017 01.
Article in English | MEDLINE | ID: mdl-27884622

ABSTRACT

The renin-angiotensin-system is an important component of cardiovascular control and is up-regulated under various conditions, including hypertension and menopause. The aim of this study was to evaluate the effects of swimming training and estrogen therapy (ET) on angiotensin-II (ANG II)-induced vasoconstriction and angiotensin-(1-7) [ANG-(1-7)]-induced vasorelaxation in aortic rings from ovariectomized spontaneously hypertensive rats. Animals were divided into Sham (SH), Ovariectomized (OVX), Ovariectomized treated with E2 (OE2), Ovariectomized plus swimming (OSW) and Ovariectomized treated with E2 plus swimming (OE2+SW) groups. ET entailed the administration of 5µg of 17ß-Estradiol three times per week. Swimming was undertaken for sixty minutes each day, five times per week. Both, training and ET were initiated seven days following ovariectomy. Forty-eight hours after the last treatment or training session, the animals' systolic blood pressures were measured, and blood samples were collected to measure plasma ANG II and ANG-(1-7) levels via radioimmunoassay. In aortic rings, the vascular reactivity to ANG II and ANG-(1-7) was assessed. Expression of ANG-(1-7) in aortic wall was analyzed by immunohistochemistry. The results showed that both exercise and ET increased plasma ANG II levels despite attenuating systolic blood pressure. Ovariectomy increased constrictor responses to ANG II and decreased dilatory responses to ANG-(1-7), which were reversed by swimming independently of ET. Moreover, it was observed an apparent increase in ANG-(1-7) content in the aorta of the groups subjected to training and ET. Exercise training may play a cardioprotective role independently of ET and may be an alternative to ET in hypertensive postmenopausal women.


Subject(s)
Aorta/metabolism , Exercise Therapy , Hypertension/therapy , Physical Conditioning, Animal , Angiotensin I/blood , Angiotensin II/blood , Animals , Aorta/pathology , Estradiol/administration & dosage , Estrogens/metabolism , Estrogens/therapeutic use , Humans , Hypertension/blood , Hypertension/physiopathology , Ovariectomy , Peptide Fragments/blood , Rats , Rats, Inbred SHR , Renin-Angiotensin System/genetics
11.
Hypertens Res ; 39(11): 769-776, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27383506

ABSTRACT

Renovascular hypertension is characterized by increased angiotensin II and oxidative stress, and by endothelial dysfunction. The purpose of this study was to test whether the administration of aliskiren (ALSK) and l-arginine (l-ARG) would restore impaired baroreflex sensitivity and reduce oxidative stress in a rat renovascular hypertension model. Hypertension was induced by clipping the left renal artery, and the following five groups were created: SHAM; two-kidney, 1-clip (2K1C); 2K1C plus ALSK (ALSK); 2K1C plus l-ARG (l-ARG); and 2K1C plus ALSK+l-ARG (ALSK+l-ARG). After 21 days of treatment, only the ALSK+l-ARG group was effective in normalizing the arterial pressure (108.8±2.8 mm Hg). The l-ARG and ALSK+l-ARG groups did not show hypertrophy of the left ventricle. All the treatments restored the depressed baroreflex sensitivity to values found in the SHAM group. Acute administration of TEMPOL restored the depressed baroreflex sensitivity in the 2K1C group to values that resembled those presented by the other groups. All treatments were effective for an increase in the antioxidant pathway and reduction in the oxidative pathway. In conclusion, the treatment with ALSK or l-ARG reduced oxidative stress and restored reduced baroreflex sensitivity in renovascular hypertension. In addition, the treatments were able to normalize blood pressure and reverse left ventricular hypertrophy when used in combination.


Subject(s)
Amides/pharmacology , Arginine/pharmacology , Baroreflex/drug effects , Fumarates/pharmacology , Hypertension, Renovascular/physiopathology , Oxidative Stress/drug effects , Sympathetic Nervous System/drug effects , Animals , Blood Pressure/drug effects , Catalase/metabolism , Heart Rate/drug effects , Hypertension, Renovascular/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/physiopathology , Male , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology
12.
Fundam Clin Pharmacol ; 30(4): 316-26, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27148800

ABSTRACT

This study evaluated the effects of the isolated use of a low dose of methyltestosterone (MT) on cardiovascular reflexes and hormonal levels and its geno- and cytotoxic safety in ovariectomized rats. Female Wistar rats were divided into four groups (n = 6), respectively: SHAM (received vehicle methylcellulose 0.5%), SHAM + MT (received MT 0.05 mg/kg), OVX (received vehicle), and OVX + MT (received MT). Twenty-one days after ovariectomy, treatment was given orally daily for 28 days. The Bezold-Jarisch reflex (BJR) was analyzed by measuring the bradycardic and hypotensive responses elicited by phenylbiguanide (PBG) administration. The baroreflex sensitivity (BRS) was evaluated by phenylephrine and sodium nitroprussite. Myocyte hypertrophy was determined by morphometric analysis of H&E stained slides. Biochemical data were analyzed, as well as micronucleus assay. MT improved BRS and increased testosterone values, but did not change estradiol in the OVX group. MT did not promote changes in mean arterial pressure, heart rate, BJR, serum concentrations of troponin I, weight and histopathology of the heart. MT was able to restore the BRS in OVX rats. The geno- and cytotoxic safety of the MT was demonstrated by the absence of an increase in the micronucleus (PCEMN) or change in the ratio between normochromatic erythrocytes and polychromatic erythrocytes (NCE/PCE).


Subject(s)
Baroreflex/drug effects , Baroreflex/physiology , Methyltestosterone/administration & dosage , Ovariectomy , Animals , Cytotoxicity Tests, Immunologic/methods , Dose-Response Relationship, Drug , Female , Methyltestosterone/toxicity , Mutagenicity Tests/methods , Rats , Rats, Wistar
13.
Hypertens Res ; 38(7): 471-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25740291

ABSTRACT

Renovascular hypertension is characterized by increased renal sympathetic activity, angiotensin II and by endothelial dysfunction. The purpose of this study was to determine the role of renal sympathetic nerve activity (RSNA) in mediating the anti-hypertensive effects of aliskiren (ALSK) and L-arginine (L-ARG) in a rat renovascular hypertension model. Hypertension was induced by clipping the right renal artery, and the following five groups were divided: SHAM operated; 2-kidney, 1-clip (2K1C); 2K1C plus ALSK; 2K1C plus L-ARG; and 2K1C plus ALSK+ L-ARG. The systolic blood pressure (SBP) of 2K1C rats increased from 114.4±5.2 to 204±12.7 mm Hg (P<0.05) and was only reduced by ALSK+L-ARG treatment (138.4±4.37 mm Hg). The 2K1C hypertension increased the baseline RSNA (SHAM: 62.4±6.39 vs. 2K1C: 97.4±8.43%). L-ARG or ALSK+L-ARG treatment significantly decreased baseline RSNA (2K1C L-ARG:70.7±2.39; 2K1C ALSK+L-ARG: 69.3±4.23%), but ALSK treatment alone did not (2K1C ALSK: 84.2±2.5%). Urinary water, Na(+), Cl(-) and urea excretion were similar in the 2K1C L-ARG, 2K1C ALSK+L-ARG and SHAM groups. The combination of ALSK+L-ARG restored urine flow and increased the glomerular filtration rate. The nNOS expression in the non clipped kidney was significantly increased in 2K1C ALSK+L-ARG rats. In conclusion, combined ALSK+L-ARG treatment normalizes SBP and prevents renal dysfunction in 2K1C hypertensive rats.


Subject(s)
Amides/therapeutic use , Antihypertensive Agents/therapeutic use , Arginine/therapeutic use , Fumarates/therapeutic use , Hypertension, Renovascular/drug therapy , Animals , Blood Pressure , Chlorides/urine , Glomerular Filtration Rate/drug effects , Hypertension, Renovascular/pathology , Hypertension, Renovascular/physiopathology , Kidney/drug effects , Kidney/innervation , Kidney/pathology , Male , Nitric Oxide Synthase/metabolism , Rats , Rats, Wistar , Sodium/urine , Sympathetic Nervous System/drug effects , Urea/urine , Water/metabolism
14.
Clin Sci (Lond) ; 127(4): 265-75, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24521306

ABSTRACT

Metformin is an antihyperglycaemic drug with pleiotropic effects that result in cardiovascular improvement. The aim of the present study was to evaluate the effects of metformin treatment on vascular dysfunction in ovariectomized rats. At 8 weeks of age, female Wistar rats were subjected to ovariectomy or a sham surgery. After 21 days, the animals were divided into three groups: SHAM (sham-operated rats), OVX (ovariectomized rats) and MET (ovariectomized rats treated with metformin at 300 mg/kg of body weight per day), and treated for 14 days. The vasorelaxation responses to ACh (acetylcholine) and SNP (sodium nitroprusside) were evaluated in mesenteric vascular beds, oxidative stress was evaluated and Western blot analysis of eNOS (endothelial NO synthase) and the NADPH oxidase Nox2 was performed. ACh-induced relaxation was reduced in the OVX group and partially restored in the MET group. L-NAME (NG-nitro-L-arginine methyl ester) attenuated and equalized the ACh-induced response in all groups. Attenuation of the ACh-induced responses by 4-aminopyridine (a blocker of voltage-gated potassium channels) was greater in the MET group compared with the OVX group. The SNP-induced responses were reduced in the OVX group and restored in the MET group. Inhibition of NADPH oxidase by apocynin (10 µM) restored the SNP-induced responses in the OVX group, enhanced these responses in the MET group and had no effect in the SHAM group. The OVX group exhibited reduced levels of eNOS protein and increased levels of oxidative stress and Nox2 protein; metformin treatment corrected all of these parameters. In conclusion, the pathophysiological changes observed in the mesenteric beds of ovariectomized rats were ameliorated by metformin. If this translates to humans, metformin could have additional benefits for post-menopausal women treated with this drug for glycaemic control.


Subject(s)
Endothelium, Vascular/drug effects , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Vascular Diseases/drug therapy , Vasodilation/drug effects , Acetylcholine/metabolism , Animals , Endothelium, Vascular/metabolism , Female , Membrane Glycoproteins/metabolism , NADPH Oxidase 2 , NADPH Oxidases/metabolism , Nitric Oxide Synthase Type III/metabolism , Ovariectomy/methods , Rats , Rats, Wistar
15.
BMC Cancer ; 14: 39, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24460780

ABSTRACT

BACKGROUND: The aim of this study was to assess the severity of pain and its impact on the quality of life (QoL) in untreated patients with head and neck squamous cell carcinoma (HNSCC). METHODS: A study group of 127 patients with HNSCC were interviewed before antineoplastic treatment. The severity of pain was measured using the Brief Pain Inventory (BPI) questionnaire, and the QoL was assessed with the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core-30 (EORTC QLQ-C30) and the head and neck module (QLQ-H&N35). RESULTS: The mean age of the patients was 57.9 years, and there was a predominance of men (87.4%). The most frequent site of the primary tumor was the oral cavity (70.6%), and the majority of the patients had advanced cancers (stages III and IV). QoL in early stage of cancer obtained better scores. Conversely, the patients with advanced stage cancer scored significantly higher on the symptom scales regarding fatigue, pain, appetite loss and financial difficulties, indicating greater difficulties. Regard to the severity of pain, patients with moderate-severe pain revealed a significantly worse score than patients without pain. CONCLUSIONS: The severity of pain is statistically related to the advanced stages of cancer and directly affects the QoL. An assessment of the quality of life and symptoms before therapy can direct attention to the most important symptoms, and appropriate interventions can then be directed toward improving QoL outcomes and the response to treatment.


Subject(s)
Carcinoma, Squamous Cell/complications , Head and Neck Neoplasms/complications , Quality of Life , Adult , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/psychology , Carcinoma, Squamous Cell/therapy , Cost of Illness , Female , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/psychology , Head and Neck Neoplasms/therapy , Humans , Male , Middle Aged , Neoplasm Staging , Pain/diagnosis , Pain/etiology , Pain/psychology , Pain Measurement , Prospective Studies , Severity of Illness Index , Squamous Cell Carcinoma of Head and Neck , Surveys and Questionnaires , Young Adult
16.
PLoS One ; 8(6): e64806, 2014.
Article in English | MEDLINE | ID: mdl-23755145

ABSTRACT

The aim of this study was to evaluate the effects of swimming training (SW) and oestrogen replacement therapy (ERT) on coronary vascular reactivity and the expression of antioxidant enzymes in ovariectomized rats. Animals were randomly assigned to one of five groups: sham (SH), ovariectomized (OVX), ovariectomized with E2 (OE2), ovariectomized with exercise (OSW), and ovariectomized with E2 plus exercise (OE2+SW). The SW protocol (5×/week, 60 min/day) and/or ERT were conducted for 8 weeks; the vasodilator response to bradykinin was analysed (Langendorff Method), and the expression of antioxidant enzymes (SOD-1 and 2, catalase) and eNOS and iNOS were evaluated by Western blotting. SW and ERT improved the vasodilator response to the highest dose of bradykinin (1000 ng). However, in the OSW group, this response was improved at 100, 300 and 1000 ng when compared to OVX (p<0,05). The SOD-1 expression was increased in all treated/trained groups compared to the OVX group (p<0,05), and catalase expression increased in the OSW group only. In the trained group, eNOS increased vs. OE2, and iNOS decreased vs. SHAM (p<0,05). SW may represent an alternative to ERT by improving coronary vasodilation, most likely by increasing antioxidant enzyme and eNOS expression and augmenting NO bioavailability.


Subject(s)
Antioxidants/metabolism , Coronary Vessels/enzymology , Coronary Vessels/physiology , Estrogens/pharmacology , Ovariectomy , Physical Conditioning, Animal , Swimming/physiology , Adiposity/drug effects , Animals , Blood Pressure/drug effects , Body Composition/drug effects , Body Weight/drug effects , Bradykinin/pharmacology , Coronary Vessels/drug effects , Estrogen Replacement Therapy , Female , In Vitro Techniques , Isoenzymes/metabolism , Nitric Oxide Synthase/metabolism , Rats, Wistar , Superoxide Dismutase/metabolism , Vasodilation/drug effects
17.
Oncologist ; 17(4): 499-507, 2012.
Article in English | MEDLINE | ID: mdl-22491005

ABSTRACT

OBJECTIVES: The objective of this study was to evaluate the effect of tamoxifen on blood markers that are associated with cardiovascular risk, such as C-reactive protein (CRP), apolipoprotein A-1 (Apo-A), and apolipoprotein B-100 (Apo-B), in women undergoing chemotherapy for breast cancer. METHODS: Over a period of 12 months, we followed 60 women with breast cancer. The women were divided into the following groups: a group that received only chemotherapy (n = 23), a group that received chemotherapy plus tamoxifen (n = 21), and a group that received only tamoxifen (n = 16). Plasma CRP levels were assessed at 0, 3, 6, and 12 months, and Apo-A and Apo B levels as well as the Apo-B/Apo-A ratio were assessed at 0 and 12 months. RESULTS: We found increases in the plasma concentration of CRP in the chemotherapy alone and chemotherapy plus tamoxifen groups after 3 and 6 months of treatment (before the introduction of tamoxifen). However, after 12 months of treatment, women who used tamoxifen (the chemotherapy plus tamoxifen and tamoxifen alone groups) showed a significant reduction in CRP and Apo-B levels and a decrease in the Apo-B/Apo-A ratio. A significant increase in serum Apo-A levels was observed in the group receiving chemotherapy alone as a treatment for breast cancer. CONCLUSION: The use of tamoxifen after chemotherapy for the treatment of breast cancer significantly reduces the levels of cardiovascular disease risk markers (CRP, Apo-B, and the Apo-B/Apo-A ratio).


Subject(s)
Antineoplastic Agents, Hormonal/therapeutic use , Biomarkers, Tumor/blood , Breast Neoplasms/blood , Breast Neoplasms/drug therapy , Cardiovascular Diseases/blood , Tamoxifen/therapeutic use , Antineoplastic Agents, Hormonal/administration & dosage , Apolipoprotein A-I/blood , Apolipoprotein B-100/blood , Blood Pressure/drug effects , Breast Neoplasms/physiopathology , C-Reactive Protein/metabolism , Female , Heart Rate/drug effects , Humans , Middle Aged , Risk Factors , Tamoxifen/administration & dosage
18.
Toxicon ; 60(1): 4-11, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22453065

ABSTRACT

The Scorpaena plumieri fish venom induces a severe pain and edema, observed both clinically and experimentally. In order to understand more about the envenomation syndrome, the present study characterized experimentally the local acute inflammatory response induced by S. plumieri venom (SpV) in a mouse model of tissue injury. Our results demonstrated that the local inflammatory response provoked after 2 h of SpV injection in footpad of mice is characterized by release of pivotal pro-inflammatory mediators (TNF, IL-6 and MCP-1). These mediators could be associated with histopathological changes observed into paw tissue, characterized by cellular infiltration, mainly neutrophils. Additionally, an investigation of edema formation pathways involved in inflammatory response was performed. SpV-induced edema was reduced significantly by previous administration of aprotinin or icatibant (HOE-140). However, the pre-treatment with diclofenac sodium and promethazine had less effect on this response. These results demonstrate that the kallikrein-kinin system (KKS) plays a major role in the edema formation. Despite the whole venom hydrolyzed the kallikrein synthetic substrate S-2302 (Pro-Phe-Arg-pNA), its main pro-inflammatory fraction was devoid of kininogenase activity. Our results demonstrate that SpV evokes a complex inflammatory reaction stimulating a secretion of TNF, IL-6, MCP-1 and leukocytes recruitment at the site of venom injection. In addition provide clear evidence of the involvement of the KKS in inflammatory response induced by S. plumieri venom.


Subject(s)
Fishes , Inflammation/chemically induced , Marine Toxins/toxicity , Animals , Anti-Inflammatory Agents/therapeutic use , Chemokines/metabolism , Cytokines/metabolism , Inflammation/drug therapy , Male , Mice
19.
Can J Physiol Pharmacol ; 90(1): 75-82, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22217235

ABSTRACT

Several studies have demonstrated that gonadal hormones show significant effects on the brain and signaling pathways of effector organs/cells that respond to neurotransmitters. Since little information is available concerning the impact of male and female gonadal hormones on the renal and peripheral sympathetic system, the objective of this study was to further assess whether and how the renal content and plasma concentration of catecholamines are influenced by gender and the estrous cycle in rats. To achieve this, males Wistar rats were divided into 4 groups: (i) sham (i.e., control), (ii) gonadectomized, (iii) gonadectomized and nandrolone decanoate replacement at physiological levels or (iv) gonadectomized and nandrolone decanoate replacement at high levels. Female Wistar rats were divided into 6 groups: (i) ovariectomized (OVX), (ii) estrogen replacement at physiological levels and (iii) estrogen replacement at at high levels, (iv) progesterone replacement at physiological levels and (v) progesterone replacement at at high levels, and (vi) sham. The sham group was subdivided into four subgroups: (i) proestrus, (ii) estrus, (iii) metaestrus, and (iv) diestrus. Ten days after surgery, the animals were sacrificed and their plasma and renal catecholamine levels measured for intergroup comparisons. Gonadectomy led to an increase in the plasma catecholamine concentration in females, as well as in the renal catecholamine content of both male and female rats. Gonadectomized males also showed a lower level of plasma catecholamine than the controls. The urinary flow, and the fractional excretion of sodium and chloride were significantly increased in gonadectomized males and in the OVX group when compared with their respective sham groups.


Subject(s)
Catecholamines/blood , Catecholamines/metabolism , Estrous Cycle/blood , Estrous Cycle/metabolism , Kidney/metabolism , Animals , Chlorides/urine , Dose-Response Relationship, Drug , Estradiol/administration & dosage , Estradiol/pharmacology , Female , Gonadal Hormones/administration & dosage , Gonadal Hormones/pharmacology , Kidney/drug effects , Kidney/physiopathology , Male , Nandrolone/administration & dosage , Nandrolone/analogs & derivatives , Nandrolone/pharmacology , Nandrolone Decanoate , Orchiectomy/methods , Orchiectomy/statistics & numerical data , Ovariectomy/methods , Ovariectomy/statistics & numerical data , Progesterone/administration & dosage , Progesterone/pharmacology , Rats , Rats, Wistar , Sex Characteristics , Sodium/urine , Urination/drug effects , Urination/physiology
20.
Peptides ; 32(8): 1706-12, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21762739

ABSTRACT

The aim of this study was to compare, under resting conditions, the influence of chronic training in swimming or running on mean arterial pressure (MAP) and the involvement of the natriuretic peptide system in this response. Two-month-old male spontaneously hypertensive rats (SHR) were divided into three groups-sedentary (SD), swimming (SW) and running (RN)-and were trained for eight weeks under regimens of similar intensities. Atria tissue and plasma atrial natriuretic peptide (ANP) concentrations were measured by radioimmunoassay. ANP mRNA levels in the right and left atria as well as the natriuretic peptide receptors (NPR), NPR-A and NPR-C, mRNA levels in the kidney were determined by real-time PCR. Autoradiography was used to quantify NPR-A and NPR-C in mesenteric adipose tissue. Both training modalities, swimming and running, reduced the mean arterial pressure (MAP) of SHR. Swimming, but not running, training increased plasma levels of ANP compared to the sedentary group (P<0.05). Expression of ANP mRNA in the left atrium was reduced in the RN compared to the SD group (P<0.05). Expression of NPR-A and NPR-C in the kidneys of the SW group decreased significantly (P<0.05) compared to the SD group. Although swimming increased (125)I-ANP binding to mesenteric adipose tissue, displacement by c-ANF was reduced, indicating a reduction of NPR-C. These results suggest that the MAP reduction induced by exercise in SHR differs in its mechanisms between the training modalities, as evidenced by the finding that increased levels of ANP were only observed after the swimming regimen.


Subject(s)
Arteries/physiology , Atrial Natriuretic Factor/metabolism , Blood Pressure/physiology , Physical Conditioning, Animal/physiology , Animals , Atrial Natriuretic Factor/genetics , Male , Rats , Rats, Inbred SHR , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/metabolism , Running , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...