Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 107(10): 1401-1409, 2020 10.
Article in English | MEDLINE | ID: mdl-33021337

ABSTRACT

PREMISE: Atmospheric carbon dioxide (CO2 ) concentration is increasing, as is the frequency and duration of drought in some regions. Elevated CO2 can decrease the effects of drought by further decreasing stomatal opening and, hence, water loss from leaves. Both elevated CO2 and drought typically decrease plant nutrient concentration, but their interactive effects on nutrient status and uptake are little studied. We investigated whether elevated CO2 helps negate the decrease in plant nutrient status during drought by upregulating nutrient-uptake proteins in roots. METHODS: Barley (Hordeum vulgare) was subjected to current vs. elevated CO2 (400 or 700 ppm) and drought vs. well-watered conditions, after which we measured biomass, tissue nitrogen (N) and phosphorus (P) concentrations (%N and P), N- and P-uptake rates, and the concentration of the major N- and P-uptake proteins in roots. RESULTS: Elevated CO2 decreased the impact of drought on biomass. In contrast, both drought and elevated CO2 decreased %N and %P in most cases, and their effects were additive for shoots. Root N- and P-uptake rates were strongly decreased by drought, but were not significantly affected by CO2 . Averaged across treatments, both drought and high CO2 resulted in upregulation of NRT1 (NO3- transporter) and AMT1 (NH4+ transporter) per unit total root protein, while only drought increased PHT1 (P transporter). CONCLUSIONS: Elevated CO2 exacerbated decreases in %N and %P, and hence food quality, during drought, despite increases in the concentration of nutrient-uptake proteins in roots, indicating other limitations to nutrient uptake.


Subject(s)
Carbon Dioxide , Droughts , Biomass , Hordeum , Nutrients , Plant Leaves , Plant Roots
2.
Plants (Basel) ; 7(2)2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29601475

ABSTRACT

Climate change will increase drought in many regions of the world. Besides decreasing productivity, drought also decreases the concentration (%) of nitrogen (N) and phosphorous (P) in plants. We investigated if decreases in nutrient status during drought are correlated with decreases in levels of nutrient-uptake proteins in roots, which has not been quantified. Drought-sensitive (Hordeum vulgare, Zea mays) and -tolerant grasses (Andropogon gerardii) were harvested at mid and late drought, when we measured biomass, plant %N and P, root N- and P-uptake rates, and concentrations of major nutrient-uptake proteins in roots (NRT1 for NO3, AMT1 for NH4, and PHT1 for P). Drought reduced %N and P, indicating that it reduced nutrient acquisition more than growth. Decreases in P uptake with drought were correlated with decreases in both concentration and activity of P-uptake proteins, but decreases in N uptake were weakly correlated with levels of N-uptake proteins. Nutrient-uptake proteins per gram root decreased despite increases per gram total protein, because of the larger decreases in total protein per gram. Thus, drought-related decreases in nutrient concentration, especially %P, were likely caused, at least partly, by decreases in the concentration of root nutrient-uptake proteins in both drought-sensitive and -tolerant species.

3.
Physiol Plant ; 159(3): 354-365, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27893161

ABSTRACT

Atmospheric CO2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO3- ) or ammonium (NH4+ ), using membrane-localized transport proteins in roots, which are key targets for improving N use. Although interactive effects of elevated CO2 , chronic warming and N form on N relations are expected, these have not been studied. In this study, tomato (Solanum lycopersicum) plants were grown at two levels of CO2 (400 or 700 ppm) and two temperature regimes (30 or 37°C), with NO3- or NH4+ as the N source. Elevated CO2 plus chronic warming severely inhibited plant growth, regardless of N form, while individually they had smaller effects on growth. Although %N in roots was similar among all treatments, elevated CO2 plus warming decreased (1) N-uptake rate by roots, (2) total protein concentration in roots, indicating an inhibition of N assimilation and (3) shoot %N, indicating a potential inhibition of N translocation from roots to shoots. Under elevated CO2 plus warming, reduced NO3- -uptake rate per g root was correlated with a decrease in the concentration of NO3- -uptake proteins per g root, reduced NH4+ uptake was correlated with decreased activity of NH4+ -uptake proteins and reduced N assimilation was correlated with decreased concentration of N-assimilatory proteins. These results indicate that elevated CO2 and chronic warming can act synergistically to decrease plant N uptake and assimilation; hence, future global warming may decrease both plant growth and food quality (%N).


Subject(s)
Carbon Dioxide/pharmacology , Nitrogen/metabolism , Solanum lycopersicum/metabolism , Ammonium Compounds/pharmacology , Biomass , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Nitrates/pharmacology , Nitrogen/analysis , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...