Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Neuron ; 104(3): 588-600.e5, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31623918

ABSTRACT

Whether mouse visual cortex contains orderly feature maps is debated. The overlapping pattern of geniculocortical inputs with M2 muscarinic acetylcholine receptor-rich patches in layer 1 (L1) suggests a non-random architecture. Here, we found that L1 inputs from the lateral posterior thalamus (LP) avoid patches and target interpatches. Channelrhodopsin-2-assisted mapping of excitatory postsynaptic currents (EPSCs) in L2/3 shows that the relative excitation of parvalbumin-expressing interneurons (PVs) and pyramidal neurons (PNs) by dLGN, LP, and cortical feedback is distinct and depends on whether the neurons reside in clusters aligned with patches or interpatches. Paired recordings from PVs and PNs show that unitary inhibitory postsynaptic currents (uIPSCs) are larger in interpatches than in patches. The spatial clustering of inhibition is matched by dense clustering of PV terminals in interpatches. The results show that the excitation/inhibition balance across V1 is organized into patch and interpatch subnetworks, which receive distinct long-range inputs and are specialized for the processing of distinct spatiotemporal features.


Subject(s)
Geniculate Bodies/physiology , Interneurons/physiology , Neural Inhibition/physiology , Pyramidal Cells/physiology , Visual Cortex/physiology , Animals , Brain Mapping , Excitatory Postsynaptic Potentials , Inhibitory Postsynaptic Potentials , Interneurons/metabolism , Lateral Thalamic Nuclei/physiology , Mice , Neural Pathways , Parvalbumins/metabolism
2.
Medicines (Basel) ; 6(3)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443547

ABSTRACT

Trigeminal neuropathic pain is a chronic pain condition caused by damage or inflammation of the trigeminal nerve or its branches, with both peripheral and central nervous system dysfunction contributing to the disorder. Trigeminal pain conditions present with diagnostic and therapeutic challenges to healthcare providers and often require multiple therapeutic approaches for pain reduction. This review will provide the overview of pathophysiology in peripheral and central nociceptive circuits that are involved in neuropathic pain conditions involving the trigeminal nerve and the current therapeutics that are used to treat these disorders. Recent advances in treatment of trigeminal pain, including novel therapeutics that target ion channels and receptors, gene therapy and monoclonal antibodies that have shown great promise in preclinical studies and clinical trials will also be described.

3.
Cereb Cortex ; 29(5): 2291-2304, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30877792

ABSTRACT

Hyperpolarization-activated cation channels are involved, among other functions, in learning and memory, control of synaptic transmission and epileptogenesis. The importance of the HCN1 and HCN2 isoforms for brain function has been demonstrated, while the role of HCN4, the third major neuronal HCN subunit, is not known. Here we show that HCN4 is essential for oscillatory activity in the thalamocortical (TC) network. HCN4 is selectively expressed in various thalamic nuclei, excluding the thalamic reticular nucleus. HCN4-deficient TC neurons revealed a massive reduction of Ih and strongly reduced intrinsic burst firing, whereas the current was normal in cortical pyramidal neurons. In addition, evoked bursting in a thalamic slice preparation was strongly reduced in the mutant mice probes. HCN4-deficiency also significantly slowed down thalamic and cortical oscillations during active wakefulness. Taken together, these results establish that thalamic HCN4 channels are essential for the production of rhythmic intrathalamic oscillations and determine regular TC oscillatory activity during alert states.


Subject(s)
Brain Waves , Cerebral Cortex/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology , Neurons/physiology , Thalamus/physiology , Action Potentials , Animals , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Models, Neurological , Neural Pathways/physiology
4.
Elife ; 52016 09 26.
Article in English | MEDLINE | ID: mdl-27669144

ABSTRACT

Diverse features of sensory stimuli are selectively processed in distinct brain areas. The relative recruitment of inhibitory and excitatory neurons within an area controls the gain of neurons for appropriate stimulus coding. We examined how such a balance of inhibition and excitation is differentially recruited across multiple levels of a cortical hierarchy by mapping the locations and strengths of synaptic inputs to pyramidal and parvalbumin (PV)-expressing neurons in feedforward and feedback pathways interconnecting primary (V1) and two higher visual areas. While interareal excitation was stronger in PV than in pyramidal neurons in all layer 2/3 pathways, we observed a gradual scaling down of the inhibition/excitation ratio from the most feedforward to the most feedback pathway. Our results indicate that interareal gain control depends on the hierarchical position of the source and the target, the direction of information flow through the network, and the laminar location of target neurons.


Subject(s)
Neural Inhibition , Neurons/physiology , Visual Cortex/physiology , Animals , Mice , Neural Pathways/physiology
5.
Neuron ; 87(3): 632-43, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26247867

ABSTRACT

Layer 1 (L1) of primary visual cortex (V1) is the target of projections from many brain regions outside of V1. We found that inputs to the non-columnar mouse V1 from the dorsal lateral geniculate nucleus and feedback projections from multiple higher cortical areas to L1 are patchy. The patches are matched to a pattern of M2 muscarinic acetylcholine receptor expression at fixed locations of mouse, rat, and monkey V1. Neurons in L2/3 aligned with M2-rich patches have high spatial acuity, whereas cells in M2-poor zones exhibited high temporal acuity. Together M2+ and M2- zones form constant-size domains that are repeated across V1. Domains map subregions of the receptive field, such that multiple copies are contained within the point image. The results suggest that the modular network in mouse V1 selects spatiotemporally distinct clusters of neurons within the point image for top-down control and differential routing of inputs to cortical streams.


Subject(s)
Nerve Net/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Animals , Female , Haplorhini , Male , Mice , Mice, Inbred C57BL , Nerve Net/cytology , Photic Stimulation/methods , Rats , Rats, Long-Evans , Visual Cortex/cytology , Visual Pathways/cytology
6.
J Physiol ; 593(1): 127-44, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25556792

ABSTRACT

KEY POINTS: During the behavioural states of sleep and wakefulness thalamocortical relay neurons fire action potentials in high frequency bursts or tonic sequences, respectively. The modulation of specific K(+) channel types, termed TASK and TREK, allows these neurons to switch between the two modes of activity. In this study we show that the signalling lipids phosphatidylinositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG), which are components of their membrane environment, switch on and shut off TREK and TASK channels, respectively. These channel modulations contribute to a better understanding of the molecular basis of the effects of neurotransmitters such as ACh which are released by the brainstem arousal system. The present report introduces PIP2 and DAG as new elements of signal transduction in the thalamus. The activity of two-pore domain potassium channels (K2P ) regulates the excitability and firing modes of thalamocortical (TC) neurons. In particular, the inhibition of two-pore domain weakly inwardly rectifying K(+) channel (TWIK)-related acid-sensitive K(+) (TASK) channels and TWIK-related K(+) (TREK) channels, as a consequence of the stimulation of muscarinic ACh receptors (MAChRs) which are coupled to phosphoinositide-specific phospholipase C (PLCß), induces a shift from burst to tonic firing. By using a whole cell patch-clamp approach, the contribution of the membrane-bound second messenger molecules phosphatidylinositol 4,5-bisphosphate (PIP2 ) and diacylglycerol (DAG) acting downstream of PLCß was probed. The standing outward current (ISO ) was used to monitor the current through TASK and TREK channels in TC neurons. By exploiting different manoeuvres to change the intracellular PIP2 level in TC neurons, we here show that the scavenging of PIP2 (by neomycin) results in an increased muscarinic effect on ISO whereas increased availability of PIP2 (inclusion to the patch pipette; histone-based carrier) decreased muscarinic signalling. The degree of muscarinic inhibition specifically depends on phosphatidylinositol phosphate (PIP) and PIP2 but no other phospholipids (phosphatidic acid, phosphatidylserine). The use of specific blockers revealed that PIP2 is targeting TREK but not TASK channels. Furthermore, we demonstrate that the inhibition of TASK channels is induced by the application of the DAG analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG). Under current clamp conditions the activation of MAChRs and PLCß as well as the application of OAG resulted in membrane depolarization, while PIP2 application via histone carrier induced a hyperpolarization. These results demonstrate a differential role of PIP2 and DAG in K2P channel modulation in native neurons which allows a fine-tuned inhibition of TREK (via PIP2 depletion) and TASK (via DAG) channels following MAChR stimulation.


Subject(s)
Diglycerides/physiology , Phosphatidylinositol 4,5-Diphosphate/physiology , Potassium Channels, Tandem Pore Domain/physiology , Thalamus/physiology , Animals , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins , Neurons/physiology , Rats, Long-Evans , Type C Phospholipases/physiology
7.
Pflugers Arch ; 467(5): 895-905, 2015 May.
Article in English | MEDLINE | ID: mdl-25346156

ABSTRACT

The thalamocortical system is characterized by two fundamentally different activity states, namely synchronized burst firing and tonic action potential generation, which mainly occur during the behavioral states of sleep and wakefulness, respectively. The switch between the two firing modes is crucially governed by the bidirectional modulation of members of the K2P channel family, namely tandem of P domains in a weakly inward rectifying K(+) (TWIK)-related acid-sensitive K(+) (TASK) and TWIK-related K(+) (TREK) channels, in thalamocortical relay (TC) neurons. Several physicochemical stimuli including neurotransmitters, protons, di- and multivalent cations as well as clinically used drugs have been shown to modulate K2P channels in these cells. With respect to modulation of these channels by G-protein-coupled receptors, PLCß plays a unique role with both substrate breakdown and product synthesis exerting important functions. While the degradation of PIP2 leads to the closure of TREK channels, the production of DAG induces the inhibition of TASK channels. Therefore, TASK and TREK channels were found to be central elements in the control of thalamic activity modes. Since research has yet focused on identifying the muscarinic pathway underling the modulation of TASK and TREK channels in TC neurons, future studies should address other thalamic cell types and members of the K2P channel family.


Subject(s)
Action Potentials/physiology , Nerve Net/physiology , Neurons/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Thalamus/physiology , Animals , Humans , Sleep/physiology
8.
Pflugers Arch ; 465(4): 469-80, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23207578

ABSTRACT

Mutations in genes coding for Ca(2+) channels were found in patients with childhood absence epilepsy (CAE) indicating a contribution of Ca(2+)-dependent mechanisms to the generation of spike-wave discharges (SWD) in humans. Since the involvement of Ca(2+) signals remains unclear, the aim of the present study was to elucidate the function of a Ca(2+)-dependent K(+) channel (BKCa) under physiological conditions and in the pathophysiological state of CAE. The activation of BKCa channels is dependent on both voltage and intracellular Ca(2+) concentrations. Moreover, these channels exhibit an outstandingly high level of regulatory heterogeneity that builds the basis for the influence of BKCa channels on different aspects of neuronal activity. Here, we analyse the contribution of BKCa channels to firing of thalamocortical relay neurons, and we test the hypothesis that BKCa channel activity affects the phenotype of a genetic rat model of CAE. We found that the activation of the ß2-adrenergic receptor/protein kinase A pathway resulted in BKCa channel inhibition. Furthermore, BKCa channels affect the number of action potentials fired in a burst and produced spike frequency adaptation during tonic activity. The latter result was confirmed by a computer modelling approach. We demonstrate that the ß2-adrenergic inhibition of BKCa channels prevents spike frequency adaptation and, thus, might significantly support the tonic firing mode of thalamocortical relay neurons. In addition, we show that BKCa channel functioning differs in epileptic WAG/Rij and thereby likely contributes to highly synchronised, epileptic network activity.


Subject(s)
Action Potentials , Interneurons/physiology , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Thalamus/metabolism , Adaptation, Physiological , Animals , Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Epilepsy, Absence/genetics , Epilepsy, Absence/metabolism , Interneurons/metabolism , Models, Neurological , Rats , Rats, Inbred Strains , Receptors, Adrenergic, beta-2/metabolism , Thalamus/cytology , Thalamus/physiopathology
9.
Pflugers Arch ; 463(1): 89-102, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22083644

ABSTRACT

Modulation of the standing outward current (I (SO)) by muscarinic acetylcholine (ACh) receptor (MAChR) stimulation is fundamental for the state-dependent change in activity mode of thalamocortical relay (TC) neurons. Here, we probe the contribution of MAChR subtypes, G proteins, phospholipase C (PLC), and two pore domain K(+) (K(2P)) channels to this signaling cascade. By the use of spadin and A293 as specific blockers, we identify TWIK-related K(+) (TREK)-1 channel as new targets and confirm TWIK-related acid-sensitve K(+) (TASK)-1 channels as known effectors of muscarinic signaling in TC neurons. These findings were confirmed using a high affinity blocker of TASK-3 and TREK-1, namely, tetrahexylammonium chloride. It was found that the effect of muscarinic stimulation was inhibited by M(1)AChR-(pirenzepine, MT-7) and M(3)AChR-specific (4-DAMP) antagonists, phosphoinositide-specific PLCß (PI-PLC) inhibitors (U73122, ET-18-OCH(3)), but not the phosphatidylcholine-specific PLC (PC-PLC) blocker D609. By comparison, depleting guanosine-5'-triphosphate (GTP) in the intracellular milieu nearly completely abolished the effect of MAChR stimulation. The block of TASK and TREK channels was accompanied by a reduction of the muscarinic effect on I (SO). Current-clamp recordings revealed a membrane depolarization following MAChR stimulation, which was sufficient to switch TC neurons from burst to tonic firing under control conditions but not during block of M(1)AChR/M(3)AChR and in the absence of intracellular GTP. These findings point to a critical role of G proteins and PLC as well as TASK and TREK channels in the muscarinic modulation of thalamic activity modes.


Subject(s)
Action Potentials/physiology , Cholinergic Neurons/physiology , Signal Transduction/physiology , Sleep/physiology , Thalamus/physiology , Action Potentials/drug effects , Animals , Cholinergic Neurons/drug effects , Electrophysiological Phenomena/drug effects , Electrophysiological Phenomena/physiology , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Gene Expression/genetics , Guanosine Diphosphate/analogs & derivatives , Guanosine Diphosphate/pharmacology , Guanosine Triphosphate/antagonists & inhibitors , Guanosine Triphosphate/metabolism , Hydrogen-Ion Concentration , Lateral Thalamic Nuclei/cytology , Lateral Thalamic Nuclei/physiology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Muscarine/pharmacology , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Nerve Tissue Proteins , Oxotremorine/analogs & derivatives , Oxotremorine/pharmacology , Patch-Clamp Techniques , Phospholipase C beta/antagonists & inhibitors , Phospholipase C beta/genetics , Phospholipase C beta/metabolism , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Rats , Rats, Long-Evans , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/antagonists & inhibitors , Receptor, Muscarinic M1/genetics , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Signal Transduction/drug effects , Thalamus/cytology , Thionucleotides/pharmacology
10.
Neurobiol Dis ; 45(1): 450-61, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21945537

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels represent the molecular substrate of the hyperpolarization-activated inward current (I(h)). Although these channels act as pacemakers for the generation of rhythmic activity in the thalamocortical network during sleep and epilepsy, their developmental profile in the thalamus is not yet fully understood. Here we combined electrophysiological, immunohistochemical, and mathematical modeling techniques to examine HCN gene expression and I(h) properties in thalamocortical relay (TC) neurons of the dorsal part of the lateral geniculate nucleus (dLGN) in an epileptic (WAG/Rij) compared to a non-epileptic (ACI) rat strain. Recordings of TC neurons between postnatal day (P) 7 and P90 in both rat strains revealed that I(h) was characterized by higher current density, more hyperpolarized voltage dependence, faster activation kinetics, and reduced cAMP-sensitivity in epileptic animals. All four HCN channel isoforms (HCN1-4) were detected in dLGN, and quantitative analyses revealed a developmental increase of protein expression of HCN1, HCN2, and HCN4 but a decrease of HCN3. HCN1 was expressed at higher levels in WAG/Rij rats, a finding that was correlated with increased expression of the interacting proteins filamin A (FilA) and tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Analysis of a simplified computer model of the thalamic network revealed that the alterations of I(h) found in WAG/Rij rats compensate each other in a way that leaves I(h) availability constant, an effect that ensures unaltered cellular burst activity and thalamic oscillations. These data indicate that during postnatal developmental the hyperpolarizing shift in voltage dependency (resulting in less current availability) is compensated by an increase in current density in WAG/Rij thereby possibly limiting the impact of I(h) on epileptogenesis. Because HCN3 is expressed higher in young versus older animals, HCN3 likely does not contribute to alterations in I(h) in older animals.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels/metabolism , Epilepsy/metabolism , Geniculate Bodies/metabolism , Neurons/metabolism , Animals , Cyclic Nucleotide-Gated Cation Channels/genetics , Epilepsy/genetics , Epilepsy/physiopathology , Gene Expression , Geniculate Bodies/physiopathology , Rats , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...