Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732713

ABSTRACT

This study investigates polyethylene glycol (PEG) homopolymer thin film adsorption on gold surfaces of controlled surface chemistry. The conformational states of physisorbed PEG are analyzed through polarization modulation infrared reflection-absorption spectrometry (PM-IRRAS). The PM-IRRAS principle is based on specific optical selection rules allowing the detection of surface-specific FTIR response of thin polymer films on the basis of differential reflectivity at the polymer/substrate interface for p- and s-polarized light. The intensification of the electric field generated at the PEG/substrate interface for p-polarized IR light in comparison with s-polarized light permits the analysis of PEG chain anisotropy and conformational changes induced by the adsorption. Results showed that PEG adsorbs on model substrates having a rather hydrophilic character in a way that the PEG chains spread parallel to the surface. In the case of a very hydrophilic substrate, the adsorbed PEG chains are in a stable thermodynamic state which allows them to arrange and crystallize as stacked crystalline lamellae after adsorption. The surface topography and morphology of the PEG thin films were also investigated by atomic force microscopy (AFM). While in the bulk state, PEG crystallizes in the form of large spherulites; on substrates whose adsorption is favored by surface chemistry, PEG crystallizes in the form of stacked lamellae with a thickness equal to 20 nm. Conversely, on a hydrophobic substrate, the PEG chains do not crystallize and adsorption occurs in the statistical coil state.

2.
Molecules ; 28(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37687128

ABSTRACT

The objective of this study was to prepare crosslinked epoxy networks containing liquid silicone particles in order to improve their mechanical properties and obtain less brittle materials. Different copolymers were used as compatibilizers. These copolymers vary in their chemical composition and structure. All of the copolymers contain hydrophobic (PDMS sequences) and hydrophilic groups. The effect of their chemical structure and architecture on the morphology of the dispersed phase, and on the final physico-chemical and flexural characteristics of epoxy/silicone blends, was explored. The morphology of crosslinked formulations was studied by scanning electron microscopy (SEM), and the thermal characteristics (glass transition temperature, Tg, and curing exothermic peak) were determined by differential scanning calorimetry (DSC). The experimental results have shown that the average diameter and particle size distribution of silicone particles depend on the chemical structure and architecture of the compatibilizers. One copolymer has been identified as the best compatibilizer, allowing a lower mean diameter and particle size distribution in addition to the best mechanical properties of the final network (less brittle character). This study has consequently evidenced the possibility of creating in situ silicone capsules inside an epoxy network by adding tailored compatibilizers to epoxy/silicone formulations.

3.
Polymers (Basel) ; 14(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36080716

ABSTRACT

The crystallinity and the growth rate of crystalline structures of polyethylene glycol and polyethylene blocks in polyethylene-b-polyethylene glycol diblock copolymers (PE-b-PEG) were evaluated and compared to polyethylene and polyethylene glycol homopolymers. Melting and crystallization behaviours of PE-b-PEG copolymers with different molecular weights and compositions are investigated by differential scanning calorimetry (DSC). The polyethylene/polyethylene glycol block ratio of the copolymers varies from 17/83 to 77/23 (weight/weight). The influence of the composition of PE-b-PEG copolymer on the ability of each block to crystallize has been determined. Thermal transition data are correlated with optical polarized microscopy, used to investigate the morphology and growth rate of crystals. The results show that the crystallization of the polyethylene block is closer to the polyethylene homopolymer when the copolymer contains more than 50 wt. % of polyethylene in the copolymer. For PE-b-PEG copolymers containing more than 50 wt. % of polyethylene glycol, the polyethylene glycol block morphology is almost similar to the PEG homopolymer. An important hindrance of each block on the crystallization growth rate of the other block has been revealed.

4.
J Food Sci ; 84(3): 499-506, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30706468

ABSTRACT

The adhesion of wheat dough affects many aspects of industrial baking, from kneading raw dough to the final baking process. In this work, an original method was developed to study the effect of temperature on the adhesive properties of bread dough in contact with a solid surface during heating. Using this approach, it will be possible to understand the factors that affect adhesion between dough and a baking surface, which will aid in developing methods to prevent dough from sticking. Overall, the dough's adhesion to a hydrophobic surface globally decreased with an increase in temperature from 35 to 97 °C, with the exception of the temperature range between 55 and 70 °C, in which the energy of adhesion increased slightly. Under these circumstances, the evolution of adhesion was primarily shaped by the rheological properties of the dough. However, when we used a solid surface with different surface energy, the results changed significantly, which suggests that the mechanisms of adhesion during heating are governed by a balance between the interfacial and bulk properties of the heated dough. The overall decrease in the adhesion of the dough to the hydrophobic glass surface may be explained by a decrease in dough hydrophobicity due to structural and chemical changes in the dough.


Subject(s)
Bread/analysis , Hot Temperature , Rheology , Triticum , Adsorption , Glass , Heating , Surface Properties
5.
Article in English | MEDLINE | ID: mdl-26666729

ABSTRACT

To study reactivity in bread crust during the baking process in the pan, we followed furan mainly resulting from Maillard and caramelisation reactions in cereal products. Furan quantification is commonly performed with automatic HS-static GC-MS. However, we showed that the automatic HS-trap GC-MS method can improve the sensitivity of the furan quantification. Indeed, this method allowed the LOD to be decreased from 0.3 ng g(-1) with HS-static mode to 0.03 ng g(-1) with HS-trap mode under these conditions. After validation of this method for furan quantification in bread crust, a difference between the crust extracted from the bottom and from the sides of the bread was evident. The quantity of furan in the bottom crust was five times lower than in the side crust, revealing less reactivity on the bottom than on the sides of the bread during the baking process in the pan. Differences in water content may explain these variations in reactivity.


Subject(s)
Bread/analysis , Cooking , Furans/analysis , Gas Chromatography-Mass Spectrometry/methods , Maillard Reaction , Temperature , Water/analysis , Water/chemistry
6.
Soft Matter ; 11(13): 2665-72, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25691435

ABSTRACT

Poly(vinyl alcohol-co-vinyl acetate) (PVA) copolymers obtained by partial hydrolysis of poly(vinyl acetate) (PVAc) are of practical importance for many applications, including emulsion and suspension polymerization processes. Their molecular characteristics have a major influence on the colloidal and interfacial properties. The most significant characteristics are represented by the average degree of hydrolysis D̅H̅, average degree of polymerization D̅P̅w̅ but also by the average acetate sequence length n(VAc)(0) which designates the so-called blockiness. Colloidal aggregates were observed in the aqueous PVA solutions having a D̅H̅ value of 73 mol%. The volume fraction of these aggregates at a given D̅H̅ value is directly correlated to the blockiness. Three PVA samples with identical D̅H̅ and D̅P̅w̅ but different blockiness were examined. By pendant drop and oscillating pendant drop techniques it was shown that the PVA sample having the lowest blockiness and thus the lowest volume fraction of colloidal aggregates has lower interfacial tension and elastic modulus E' values. On the contrary, the corresponding values are highest for PVA sample of higher blockiness. In the presence of sodium dodecyl sulfate (SDS), the colloidal aggregates are disaggregated by complex formation due to the hydrophobic-hydrophobic interactions. The PVA-SDS complex acts as a partial polyelectrolyte that induces the stretching of the chains and thus a reduction of the interface thickness. In this case, the interfacial tension and the elastic modulus both increase with increasing SDS concentration for all three PVA samples and the most significant effect was noticed for the most "blocky" copolymer sample.

7.
Appl Spectrosc ; 67(11): 1308-14, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24160883

ABSTRACT

Alkoxysilanes, and mainly trialkoxysilanes, have been widely used as coupling agents on metallic surfaces. They are of interest mainly because they form a water-stable covalent bond with a surface composed of hydroxides. The grafting of these molecules should also give rise to the formation of a siloxane network at the substrate's surface. However, only a few studies examine stainless steel substrate, such as AISI 316L, for which the main difficulty is the low surface reactivity. In order to improve the silane anchoring, a prehydrolysis of the alkoxysilane was performed to transform the methoxy groups into silanol groups. This reaction happened in an aqueous medium and at a controlled pH, which impacted the prehydrolysis efficiency. Curing followed this step, which allows the grafting of the alkoxysilane on stainless steel's surface. Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was performed in order to identify the grafting of the silane molecules. Tests were made to compare the grafting of alkoxysilanes as a function of their functional groups and their prehydrolysis conditions. PM-IRRAS coupled with atomic force microscopy allowed the observation of the grafting of the studied alkoxysilanes. The nature of the remaining functional group (its ability to react with polymer, for example) of the alkoxysilane plays a major role in this process, since its chemical nature influences the grafting mechanism.

8.
J Colloid Interface Sci ; 273(2): 381-7, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15082371

ABSTRACT

Polycaprolactone (PCL), extensively known as a biomaterial, is the subject of this paper. Knowing well that some biomaterial applications exhibit specific chain organization, we focused our study on the orientation of PCL chains when this polymer is adsorbed (spin-coated) on inert substrates such as gold-coated glass slides. The main technique allowing adsorbed thin films analysis that we chose is polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), which permits qualitative and quantitative determination of chain anisotropy in the confined layers at the interface. Based on our spectroscopic results, we achieved an adsorption model of PCL chains and we calculated orientation angles with respect to the substrate normal. Calculated values show a quasi-perpendicular deposition of PCL chains on the gold substrate. Moreover, PCL thin films remain highly crystalline, a fact which could be the basis of the important anisotropy of PCL chains.

SELECTION OF CITATIONS
SEARCH DETAIL
...