Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(17): 21621-21632, 2021 May.
Article in English | MEDLINE | ID: mdl-33415615

ABSTRACT

The impact of restrictions during various phases of COVID-19 lockdown on daily mean PM2.5 concentration in five Indian megacities (New Delhi, Chennai, Kolkata, Mumbai, and Hyderabad) was studied. The impact was studied for pre-lockdown (1st Mar-24th Mar 2020), lockdown (25th Mar-31st May 2020), and unlocking (1st Jun-31st Aug 2020) phases. The lockdown period comprises 4 lockdown phases with distinct measures, whereas the unlocking period had 3 phases. PM2.5 concentration reduced significantly in all megacities and met the national standards during the lockdown period. The maximum reduction in PM2.5 level was observed in Kolkata (62%), followed by Mumbai (49%), Chennai (34%), and New Delhi (26%) during the lockdown period. Comparatively, Hyderabad exhibited a smaller reduction in PM2.5 concentration, i.e., 10%. The average PM2.5 levels during the lockdown in the peak hour (i.e., 07:00-11:00 h) in New Delhi, Chennai, Kolkata, Mumbai, and Hyderabad decreased by 21.3%, 48.5%, 63.4%, 56.4%, and 23.8%, respectively, compared to those before lockdown period. During the unlocking period, except for Chennai, all megacities showed a reduction in average PM2.5 levels compared to concentrations in the lockdown period, but these reductions were mainly linked with monsoon rains in India. The current study provided an opportunity to study air pollution in the absence of major anthropogenic activities and during limited activities in monsoon season having an ecological design. The study reports a new baseline of PM2.5, except for monsoon, and explores this knowledge to plan future air pollution reduction strategies. The study also discusses how this new learning of knowledge could strengthen air pollution control policies for better air quality and sustainability.Graphical abstract.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Cities , Communicable Disease Control , Environmental Monitoring , Humans , India , Particulate Matter/analysis , SARS-CoV-2
2.
Sci Total Environ ; 750: 141461, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32882489

ABSTRACT

Fine particulate matter (PM2.5) is the leading environmental risk factor that requires regular monitoring and analysis for effective air quality management. This work presents the variability, trend, and exceedance analysis of PM2.5 measured at US Embassy and Consulate in five Indian megacities (Chennai, Kolkata, Hyderabad, Mumbai, and New Delhi) for six years (2014-2019). Among all cities, Delhi is found to be the most polluted city followed by Kolkata, Mumbai, Hyderabad, and Chennai. The trend analysis for six years for five megacities suggests a statistically significant decreasing trend ranging from 1.5 to 4.19 µg/m3 (2%-8%) per year. Distinct diurnal, seasonal, and monthly variations are observed in the five cities due to the different site locations and local meteorology. All cities show the highest and lowest concentrations in the winter and monsoon months respectively except for Chennai which observed the lowest levels in April. All the cities consistently show morning peaks (~08: 00-10:00 h) and the lowest level in late afternoon hours (~15:00-16:00 h). We found that the PM2.5 levels in the cities exceed WHO standards and Indian NAAQS for 50% and 33% of days in a year except for Chennai. Delhi is found to have more than 200 days of exceedances in a year and experiences an average 15 number of episodes per year when the level exceeds the Indian NAAQS. The trends in the exceedance with a varying threshold (20-380 µg/m3) suggest that not only is the annual mean PM2.5 decreasing in Delhi but also the number of exceedances is decreasing. This decrease can be attributed to the recent policies and regulations implemented in Delhi and other cities for the abatement of air pollution. However, stricter compliance of the National Clean Air Program (NCAP) policies can further accelerate the reduction of the pollution levels.

3.
Heliyon ; 6(9): e04764, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32864482

ABSTRACT

The World Health Organization has declared the COVID-19 pandemic a global public health emergency. Many countries of the world, including India, closed their borders and imposed a nationwide lockdown. In India, the lockdown was declared on March 24 for 21 days (March 25-April 14, 2020) and was later extended until May 3, 2020. During the lockdown, all major anthropogenic activities, which contribute to atmospheric pollution (such as industries, vehicles, and businesses), were restricted. The current study examines the impact of the lockdown on tropospheric NO2 concentrations. Satellite-based ozone monitoring instrument sensor data were analyzed in order to investigate the variations in tropospheric NO2 concentrations. The results showed that from March 1 to 21, 2020, the average tropospheric NO2 concentration was 214.4 ×1013 molecule cm-2 over India, and it subsequently decreased by 12.1% over the next four weeks. An increase of 0.8% in tropospheric NO2 concentrations was observed for the same period in 2019 and hence, the reduced tropospheric NO2 concentrations can be attributed to restricted anthropogenic activities during the lockdown. In the absence of significant activities, the contribution of various sources was estimated, and the emissions from biomass burning were identified as a major source of tropospheric NO2 during the lockdown. The findings of this study provide an opportunity to understand the mechanism of tropospheric NO2 emissions over India, in order to improve air quality modeling and management strategies.

4.
Environ Pollut ; 266(Pt 3): 115368, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32829030

ABSTRACT

Lockdown measures to contain COVID-19 pandemic has resulted in a considerable change in air pollution worldwide. We estimate the temporal and diurnal changes of the six criteria air pollutants, including particulate matter (PM2.5 and PM10) and gaseous pollutants (NO2, O3, CO, and SO2) during lockdown (25th March - 3rd May 2020) across regions of India using the observations from 134 real-time monitoring sites of Central Pollution Control Board (CPCB). Significant reduction in PM2.5, PM10, NO2, and CO has been found in all the regions during the lockdown. SO2 showed mixed behavior, with a slight increase at some sites but a comparatively significant decrease at other locations. O3 also showed a mixed variation with a mild increase in IGP and a decrease in the South. The absolute decrease in PM2.5, PM10, and NO2 was observed during peak morning traffic hours (08-10 Hrs) and late evening (20-24 Hrs), but the percentage reduction is almost constant throughout the day. A significant decrease in day-time O3 has been found over Indo Gangetic plain (IGP) and central India, whereas night-time O3 has increased over IGP due to less O3 loss. The most significant reduction (∼40-60%) was found in PM2.5 and PM10. The highest decrease in PM was found for the north-west and IGP followed by South and central regions. A considerable reduction (∼30-70%) in NO2 was found except for a few sites in the central region. A similar pattern was observed for CO having a ∼20-40% reduction. The reduction observed for PM2.5, PM10, NO2, and enhancement in O3 was proportional to the population density. Delhi's air quality has improved with a significant reduction in primary pollutants, however, an increase in O3 was observed. The changes reported during the lockdown are combined effect of changes in the emissions, meteorology, and atmospheric chemistry that requires detailed investigations.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Environmental Monitoring , Humans , India , Particulate Matter/analysis , SARS-CoV-2
5.
Environ Pollut ; 266(Pt 1): 115132, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32717556

ABSTRACT

Emissions from the crop residue burning adversely affect the regional and global air quality including public health. In this study, a district-wise comprehensive emission inventory of key pollutants (PM2.5, PM10, CO, CO2, SO2, NOx, N2O, NH3, CH4, NMVOC, EC, OC, PAH) emitted during primary crop residue burning was developed using activity data for the major agrarian states of north India for the agricultural year 2017-18. The emissions were scaled to the spatial resolution of 1 km grid to study the spatial distribution of crop residue burning activities using VIIRS Thermal anomalies datasets. An estimated 20.3 Mt and 9.6 Mt of crop residue were burned in Punjab and Haryana, resulting in an emission of 137.2 Gg and 56.9 Gg of PM2.5 and 163.7 Gg and 72.1 of PM10 Gg for respective states. The emissions of EC, OC, and PAHs were 8.6 Gg, 45.7 Gg, and 0.08 Gg in Punjab, whereas in Haryana emissions were 3.7 Gg, 17.7 Gg, and 0.03 Gg, respectively. The results show that rice and wheat crops were major contributor to residue burnt at the field (>90%) leading to the high load of atmospheric emissions in the IGP region. Further, CO2 equivalent greenhouse gas emissions were 34.8 Tg and 17.3 Tg for Punjab and Haryana, respectively. Around 30000 and 8500 active fires were detected by VIIRS over the agricultural area of Punjab and Haryana during the studied year. The GIS-based bottom-up approach using gridded emission inventory shows pollutant distribution dominates over the south-western part of Punjab and north-western region of Haryana. The proximity of these regions to Delhi and transboundary movement of emissions towards Indo-Gangetic plains causes high air pollution episodes. The high-resolution inventory of various pollutants will be useful for regional air quality models to better predict and manage the hotspot of air pollution.


Subject(s)
Air Pollutants/analysis , Air Pollution , Fires , Environmental Monitoring , India
6.
Sci Total Environ ; 699: 134273, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31683208

ABSTRACT

Exposure to particulate matter (PM) from traffic can cause adverse health risks. Recent studies project an increase in non-exhaust emissions in the future despite a reduction in exhaust emissions. While there is a lot of research on exhaust emissions, the challenges remain to quantify non-exhaust emissions, especially in developing countries. In this work, an approach has been developed, and on-road vehicular non-exhaust PM emissions are estimated due to brake wear, tyre wear, road wear and resuspension, at very high resolution (100 m2) over an Indian megacity Delhi. Further, the relative contribution of non-exhaust emissions to the total vehicular emission was also calculated. The total PM10 emissions in megacity Delhi were 31.5 Gg/year, which is mainly dominated by the non-exhaust sources. The non-exhaust emissions were found to be six times (86%) of the exhaust emission (14%). The highest contribution to the total vehicular PM emission comes from the cars (34%) followed by buses (23%) and heavy commercial vehicles (HCVs, 17%), which is dominated by resuspension of dust. Cars and buses contribute less to exhaust emissions and more to non-exhaust emissions. Majors roads are the largest contributors to the total emissions in Delhi. The emissions from HCVs, diesel cars along with the other diesel vehicles result in diesel vehicles contributing more than the petrol vehicles to both exhaust and non-exhaust emissions. As India target to reduce PM pollution under the national clean air program, the current study will be useful to plan a suitable intervention to mitigate air pollution and associated health impacts.

SELECTION OF CITATIONS
SEARCH DETAIL
...