Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(9): 1090, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615733

ABSTRACT

The intensity and frequency of diverse hydro-meteorological disasters viz., extreme droughts, severe floods, and cyclones have increasing trends due to unsustainable management of land and water resources, coupled with increasing industrialization, urbanization and climate change. This study focuses on the forecasting of drought using selected Artificial Neural Network (ANN)-based models to enable decision-makers to improve regional water management plans and disaster mitigation/reduction plans. Four ANN models were developed in this study, viz., one conventional ANN model and three hybrid ANN models: (a) Wavelet based-ANN (WANN), (b) Bootstrap based-ANN (BANN), and (c) Wavelet-Bootstrap based-ANN (WBANN). The Standardized Precipitation Evapotranspiration Index (SPEI), the best drought index identified for the study area, was used as a variable for drought forecasting. Three drought indices, such as SPEI-3, SPEI-6 and SPEI-12 respectively representing "short-term", "intermediate-term", and "long-term" drought conditions, were forecasted for 1-month to 3-month lead times for six weather stations over the study area. Both statistical and graphical indicators were considered to assess the performance of the developed models. For the hybrid wavelet model, the performance was evaluated for different vanishing moments of Daubechies wavelets and decomposition levels. The best-performing bootstrap-based model was further used for analysing the uncertainty associated with different drought forecasts. Among the models developed for drought forecasting for 1 to 3 months, the performances of the WANN and WBANN models are superior to the simple ANN and BANN models for the SPEI-3, SPEI-6, and SPEI-12 up to the 3-month lead time. The performance of the WANN and WBANN models is the best for SPEI-12 (MAE = 0.091-0.347, NSE = 0.873-0.982) followed by SPEI-6 (MAE = 0.258-0.593; NSE = 0.487-0.848) and SPEI-3 (MAE = 0.332-0.787, NSE = 0.196-0.825) for all the stations up to 3-month lead time. This finding is supported by the WBANN analyze uncertainties as narrower band width for SPEI-12 (0.240-0.898) as compared to SPEI-6 (0.402-1.62) and SPEI-3 (0.474-2.304). Therefore, the WBANN model is recommended for the early warning of drought events as it facilitates the uncertainty analysis of drought forecasting results.


Subject(s)
Droughts , Environmental Monitoring , India , Weather , Neural Networks, Computer
2.
J Environ Manage ; 342: 118095, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37187075

ABSTRACT

For operational flood control and estimating ecological flow regimes in deltaic branched-river systems with limited surveyed cross-sections, accurate river stage and discharge estimation using public domain Digital Elevation Model (DEM)-extracted cross-sections are challenging. To estimate the spatiotemporal variability of streamflow and river stage in a deltaic river system using a hydrodynamic model, this study demonstrates a novel copula-based framework to obtain reliable river cross-sections from SRTM (Shuttle Radar Topographic Mission) and ASTER (Advanced Spaceborne Thermal Emission and Reflection) DEMs. Firstly, the accuracy of the CSRTM and CASTER models was assessed against the surveyed river cross-sections. Thereafter, the sensitivity of the copula-based river cross-sections was evaluated by simulating river stage and discharge using MIKE11-HD in a complex deltaic branched-river system (7000 km2) of Eastern India having a network of 19 distributaries. For this, three MIKE11-HD models were developed based on surveyed cross-sections and synthetic cross-sections (CSRTM and CASTER models). The results indicated that the developed Copula-SRTM (CSRTM) and Copula-ASTER (CASTER) models significantly reduce biases (NSE>0.8; IOA>0.9) in the DEM-derived cross-sections and hence, are capable of satisfactorily reproducing observed streamflow regimes and water levels using MIKE11-HD. The performance evaluation metrics and uncertainty analysis indicated that the MIKE11-HD model based on the surveyed cross-sections simulates with higher accuracies (streamflow regimes: NSE>0.81; water levels: NSE>0.70). The MIKE11-HD model based on the CSRTM and CASTER cross-sections, reasonably simulates streamflow regimes (CSRTM: NSE>0.74; CASTER: NSE>0.61) and water levels (CSRTM: NSE>0.54; CASTER: NSE>0.51). Conclusively, the proposed framework is a useful tool for the hydrologic community to derive synthetic river cross-sections from public domain DEMs, and simulate streamflow regimes and water levels under data-scarce conditions. This modelling framework can be easily replicated in other river systems of the world under varying topographic and hydro-climatic conditions.


Subject(s)
Hydrology , Rivers , Hydrology/methods , Floods , Uncertainty , Water
3.
Sci Total Environ ; 785: 147319, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33957597

ABSTRACT

In the 21st century, groundwater depletion is posing a serious threat to humanity throughout the world, particularly in developing nations. India being the largest consumer of groundwater in the world, dwindling groundwater storage has emerged as a serious concern in recent years. Consequently, the judicious and efficient management of vital groundwater resources is one of the grand challenges in India. Groundwater modeling is a promising tool to develop sustainable management strategies for the efficient utilization of this treasured resource. This study demonstrates a pragmatic framework for predicting seasonal groundwater levels at a large scale using real-world data. Three relatively powerful Machine Learning (ML) techniques viz., ANFIS (Adaptive Neuro-Fuzzy Inference System), Deep Neural Network (DNN) and Support Vector Machine (SVM) were employed for predicting seasonal groundwater levels at the country scale using in situ groundwater-level and pertinent meteorological data of 1996-2016. ANFIS, DNN and SVM models were developed for 18 Agro-Ecological Zones (AEZs) of India and their efficacy was evaluated using suitable statistical and graphical indicators. The findings of this study revealed that the DNN model is the most proficient in predicting seasonal groundwater levels in most AEZs, followed by the ANFIS model. However, the prediction ability of the three models is 'moderate' to 'very poor' in 3 AEZs ['Western Plain and Kutch Peninsula' in Western India, and 'Deccan Plateau (Arid)' and 'Eastern Ghats and Deccan Plateau' in Southern India]. It is recommended that groundwater-monitoring network and data acquisition systems be strengthened in India in order to ensure efficient use of modeling techniques for the sustainable management of groundwater resources.

4.
Sci Rep ; 10(1): 1515, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001785

ABSTRACT

Infiltration process, which plays a paramount role in irrigation and drainage systems design, groundwater recharge and contamination evaluation, flood and drought management etc. is often controlled by several factors, among which land use/land cover (LULC) and soil physical properties are the prime factors. These factors lead to significant spatial variability of infiltration process, which poses a serious challenge for hydrologists and water managers. However, studies analyzing spatial variability and influence of both LULC and soil physical properties are scarce. To this end, grid-based infiltration experiments were carried out in a tropical sub-humid region of India to investigate spatial variability of infiltration characteristics, saturated hydraulic conductivity (Ksat) as well as to evaluate reliability of seven infiltration models in predicting infiltration behaviour and estimating Ksat. Additionally, uncertainty analysis was performed to quantify uncertainties associated with estimated Ksat for different LULC and soils. Results indicated that quasi-steady infiltration rate over the study area vary considerably with a majority of the area falling under 'low' and 'medium' infiltration categories. The infiltration process is greatly influenced by macro-pores and relatively low-permeable layers present at varying depths, typical features of lateritic vadose zones in tropical sub-humid regions, rather than its sole dependence on texture and LULC. Further, the Brutsaert model estimates Ksat with the highest accuracy and least uncertainty followed by Swartzendruber and Horton models. Except the Brutsaert model, other models are sensitive to a particular LULC. Overall, it is inferred that the Brutsaert and Swartzendruber models are robust and more reliable in predicting infiltration behavior and Ksat for the area. Findings of this study including quantification of spatial variability of important soil properties are useful for understanding detailed hydrological processes in the region and thereby, ensuring better planning and management of recurring floods and drought problems of the region.

SELECTION OF CITATIONS
SEARCH DETAIL
...