Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomolecules ; 13(12)2023 12 04.
Article in English | MEDLINE | ID: mdl-38136615

ABSTRACT

Collagen is a triple-helical protein unique to the extracellular matrix, conferring rigidity and stability to tissues such as bone and tendon. For the [(PPG)10]3 collagen-mimetic peptide at room temperature, our molecular dynamics simulations show that these properties result in a remarkably ordered first hydration layer of water molecules hydrogen bonded to the backbone carbonyl (bb-CO) oxygen atoms. This originates from the following observations. The radius of gyration attests that the PPG triplets are organized along a straight line, so that all triplets (excepting the ends) are equivalent. The solvent-accessible surface area (SASA) for the bb-CO oxygens shows a repetitive regularity for every triplet. This leads to water occupancy of the bb-CO sites following a similar regularity. In the crystal-phase X-ray data, as well as in our 100 K simulations, we observe a 0-2-1 water occupancy in the P-P-G triplet. Surprisingly, a similar (0-1.7-1) regularity is maintained in the liquid phase, in spite of the sub-nsec water exchange rates, because the bb-CO sites rarely remain vacant. The manifested ordered first-shell water molecules are expected to produce a cylindrical electrostatic potential around the peptide, to be investigated in future work.


Subject(s)
Peptides , Water , Peptides/chemistry , Water/chemistry , Solvents , Chemical Phenomena , Collagen/chemistry
2.
J Phys Chem Lett ; 14(45): 10278-10284, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37942913

ABSTRACT

To date, mechanistic insights into many clinical drugs against COVID-19 remain unexplored. Dexamethasone, a corticosteroid, is one of them. While treating the entire corticosteroid database, including vitamins D2 and D3, with cutting-edge computational techniques, several intriguing results are unfolded. From the top-notch candidates, dexamethasone is likely to inhibit the viral main protease (Mpro), with vitamin D3 exhibiting multitarget [Mpro, papain-like protease (PLpro), and nucleocapsid protein (N-pro)] roles and ciclesonide's dynamic flipping disinterring a cryptic allosteric site in the PLpro enzyme. The results rationalize why these drugs improve the health of COVID-19 patients. Understanding an enzyme's secret binding site is essential to understanding how the enzyme works and how to inhibit its function. Ciclesonide's allosteric inhibition could not only jeopardize PLpro's catalytic role in polyprotein processing but also make it less vulnerable to the host body's defense machinery. Hotspot residues in the identified allosteric site could be considered for effective therapeutic designs against PLpro.


Subject(s)
COVID-19 , Papain , Humans , Papain/chemistry , Papain/metabolism , Peptide Hydrolases/metabolism , Allosteric Site , SARS-CoV-2/metabolism , Ubiquitin , Molecular Dynamics Simulation , Binding Sites , Dexamethasone , Antiviral Agents/chemistry , Protease Inhibitors
3.
Comput Biol Chem ; 106: 107910, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37422940

ABSTRACT

A novel series of pyrimidine derivatives, bearing modified benzimidazoles at N-1 position, has been designed, synthesized and screened as NNRTIs against HIV and as broad-spectrum antiviral agents. The molecules were screened against different HIV targets using molecular docking experiment. The docking results indicated that the molecules interacted well with the residues Lys101, Tyr181, Tyr188, Trp229, Phe227 and Tyr318 present in NNIBP of HIV-RT protein, formed quite stable complexes and, thus, behaved as probable NNRTIs. Among these compounds, 2b and 4b showed anti-HIV activity with IC50 values as 6.65 µg/mL (SI = 15.50) and 15.82 µg/mL (SI = 14.26), respectively. Similarly, compound 1a showed inhibitory property against coxsackie virus B4 and compound 3b against different viruses. Molecular dynamics simulation results unequivocally demonstrated the higher stability of the complex HIV-RT:2b than the HIV-RT:nevirapine complex. The MM/PBSA-based binding free energy (-) 114.92 kJ/mol of HIV-RT:2b complex in comparison to that of HIV-RT:nevirapine complex (-) 88.33 kJ/mol, further demonstrated the higher binding strength of 2b and thus, established the potential of compound 2b as a lead molecule as an HIV-RT inhibitor.


Subject(s)
Antiviral Agents , HIV-1 , Antiviral Agents/pharmacology , Pyrimidines/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Reverse Transcriptase Inhibitors/pharmacology , HIV-1/genetics , Nevirapine , Structure-Activity Relationship , Drug Design
4.
Photosynth Res ; 156(3): 337-354, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36847893

ABSTRACT

Photosynthetic organisms have evolved to work under low and high lights in photoprotection, acting as a scavenger of reactive oxygen species. The light-dependent xanthophyll cycle involved in this process is performed by a key enzyme (present in the thylakoid lumen), Violaxanthin De-Epoxidase (VDE), in the presence of violaxanthin (Vio) and ascorbic acid substrates. Phylogenetically, VDE is found to be connected with an ancestral enzyme Chlorophycean Violaxanthin De-Epoxidase (CVDE), present in the green algae on the stromal side of the thylakoid membrane. However, the structure and functions of CVDE were not known. In search of functional similarities involving this cycle, the structure, binding conformation, stability, and interaction mechanism of CVDE are explored with the two substrates compared to VDE. The structure of CVDE was determined by homology modeling and validated. In silico docking (of first-principles optimized substrates) revealed it has a larger catalytic domain than VDE. A thorough analysis of the binding affinity and stability of four enzyme-substrate complexes is performed by computing free energies and their decomposition, the root-mean-square deviation (RMSD) and fluctuation (RMSF), the radius of gyration, salt bridge, and hydrogen bonding interactions in molecular dynamics. Based on these, violaxanthin interacts with CVDE to a similar extent as that of VDE. Hence, its role is expected to be the same for both enzymes. On the contrary, ascorbic acid has a weaker interaction with CVDE than VDE. Given these interactions drive epoxidation or de-epoxidation in the xanthophyll cycle, it immediately discerns that either ascorbic acid does not participate in de-epoxidation or a different cofactor is necessary as CVDE has a weaker interaction with ascorbic acid than VDE.


Subject(s)
Oxidoreductases , Xanthophylls , Oxidoreductases/metabolism , Xanthophylls/metabolism , Thylakoids/metabolism
5.
Comput Biol Med ; 142: 105183, 2022 03.
Article in English | MEDLINE | ID: mdl-34986429

ABSTRACT

With numerous infections and fatalities, COVID-19 has wreaked havoc around the globe. The main protease (Mpro), which cleaves the polyprotein to form non-structural proteins, thereby helping in the replication of SARS-CoV-2, appears as an attractive target for antiviral therapeutics. As FDA-approved drugs have shown effectiveness in targeting Mpro in previous SARS-CoV(s), molecular docking and virtual screening of existing antiviral, antimalarial, and protease inhibitor drugs were carried out against SARS-CoV-2 Mpro. Among 53 shortlisted drugs with binding energies lower than that of the crystal-bound inhibitor α-ketoamide 13 b (-6.7 kcal/mol), velpatasvir, glecaprevir, grazoprevir, baloxavir marboxil, danoprevir, nelfinavir, and indinavir (-9.1 to -7.5 kcal/mol) were the most significant on the list (hereafter referred to as the 53-list). Molecular dynamics (MD) simulations confirmed the stability of their Mpro complexes, with the MMPBSA binding free energy (ΔGbind) ranging between -124 kJ/mol (glecaprevir) and -28.2 kJ/mol (velpatasvir). Despite having the lowest initial binding energy, velpatasvir exhibited the highest ΔGbind value for escaping the catalytic site during the MD simulations, indicating its reduced efficacy, as observed experimentally. Available inhibition assay data adequately substantiated the computational forecast. Glecaprevir and nelfinavir (ΔGbind = -95.4 kJ/mol) appear to be the most effective antiviral drugs against Mpro. Furthermore, the remaining FDA drugs on the 53-list can be worth considering, since some have already demonstrated antiviral activity against SARS-CoV-2. Hence, theoretical pKi (Ki = inhibitor constant) values for all 53 drugs were provided. Notably, ΔGbind directly correlates with the average distance of the drugs from the His41-Cys145 catalytic dyad of Mpro, providing a roadmap for rapid screening and improving the inhibitor design against SARS-CoV-2 Mpro.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Coronavirus 3C Proteases , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2
6.
J Biomol Struct Dyn ; 40(5): 2217-2226, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33111618

ABSTRACT

While an FDA approved drug Ivermectin was reported to dramatically reduce the cell line of SARS-CoV-2 by ∼5000 folds within 48 h, the precise mechanism of action and the COVID-19 molecular target involved in interaction with this in-vitro effective drug are unknown yet. Among 12 different COVID-19 targets along with Importin-α studied here, the RNA dependent RNA polymerase (RdRp) with RNA and Helicase NCB site show the strongest affinity to Ivermectin amounting -10.4 kcal/mol and -9.6 kcal/mol, respectively, followed by Importin-α with -9.0 kcal/mol. Molecular dynamics of corresponding protein-drug complexes reveals that the drug bound state of RdRp with RNA has better structural stability than the Helicase NCB site and Importin-α, with MM/PBSA free energy of -187.3 kJ/mol, almost twice that of Helicase (-94.6 kJ/mol) and even lower than that of Importin-α (-156.7 kJ/mol). The selectivity of Ivermectin to RdRp is triggered by a cooperative interaction of RNA-RdRp by ternary complex formation. Identification of the target and its interaction profile with Ivermectin can lead to more powerful drug designs for COVID-19 and experimental exploration.


Subject(s)
COVID-19 Drug Treatment , Pharmaceutical Preparations , Antiviral Agents/chemistry , Humans , Ivermectin/pharmacology , Molecular Docking Simulation , SARS-CoV-2 , alpha Karyopherins
7.
J Biomol Struct Dyn ; 40(19): 8808-8824, 2022.
Article in English | MEDLINE | ID: mdl-33955317

ABSTRACT

Cystatin is a small molecular weight immunomodulatory protein of filarial parasite that plays a pivotal role in downregulating the host immune response to prolong the survival of the parasite inside the host body. Hitherto, this protein is familiar as an inhibitor of human proteases. However, growing evidences on the role of cystatin in regulating inflammatory homeostasis prompted us to investigate the molecular reasons behind the explicit anti-inflammatory trait of this protein. We have explored molecular docking and molecular dynamics simulation approaches to explore the interaction of cystatin of Wuchereria bancrofti (causative parasite of human filariasis) with human Toll-like receptors (TLRs). TLRs are the most crucial component of frontline host defence against pathogenic infections including filarial infection. Our in-silico data clearly revealed that cystatin strongly interacts with the extracellular domain of TLR4 (binding energy=-93.5 ± 10 kJ/mol) and this biophysical interaction is mediated by hydrogen bonding and hydrophobic interaction. Molecular dynamics simulation analysis revealed excellent stability of the cystatin-TLR4 complex. Taken together, our data indicated that cystatin appears to be a ligand of TLR4 and we hypothesize that cystatin-TLR4 interaction most likely to play a key role in activating the alternative activation pathways to establish an anti-inflammatory milieu. Thus, the study provokes the development of chemotherapeutics and/or vaccines for targeting the cystatin-TLR4 interaction to disrupt the pathological attributes of human lymphatic filariasis. Our findings are expected to provide a novel dimension to the existing knowledge on filarial immunopathogenesis and it will encourage the scientific communities for experimental validation of the present investigation. Communicated by Ramaswamy H. Sarma.


Subject(s)
Cystatins , Wuchereria bancrofti , Animals , Humans , Ligands , Molecular Docking Simulation , Wuchereria bancrofti/metabolism , Molecular Dynamics Simulation , Toll-Like Receptor 4/chemistry
8.
J Proteome Res ; 20(2): 1296-1303, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33472369

ABSTRACT

SARS-CoV-2, a novel coronavirus causing overwhelming death and infection worldwide, has emerged as a pandemic. Compared to its predecessor SARS-CoV, SARS-CoV-2 is more infective for being highly contagious and exhibiting tighter binding with host angiotensin-converting enzyme 2 (hACE-2). The entry of the virus into host cells is mediated by the interaction of its spike protein with hACE-2. Thus, a peptide that has a resemblance to hACE-2 but can overpower the spike protein-hACE-2 interaction will be a potential therapeutic to contain this virus. The non-interacting residues in the receptor-binding domain of hACE-2 have been mutated to generate a library of 136 new peptides. Out of this library, docking and virtual screening discover seven peptides that can exert a stronger interaction with the spike protein than hACE-2. A peptide derived from simultaneous mutation of all the non-interacting residues of hACE-2 yields almost three-fold stronger interaction than hACE-2 and thus turns out here to be the best peptide inhibitor of the novel coronavirus. The binding of the best peptide inhibitor with the spike protein is explored further by molecular dynamics, free energy, and principal component analysis, which demonstrate its efficacy compared to hACE-2. The delivery of the screened inhibitors with nanocarriers like metal-organic frameworks will be worthy of further consideration to boost their efficacy.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Biomimetic Materials/pharmacology , Peptides/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/chemistry , Biomimetic Materials/chemistry , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Peptides/chemistry , Protein Binding/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism
10.
ACS Omega ; 4(3): 4505-4518, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-31459645

ABSTRACT

Analytical methods often involve expensive instrumentation and tedious sample pretreatment for an analyte detection. Being toxic and detrimental to human health, sensing of cyanide (CN-), fluoride (F-), chloride (Cl-), bromide (Br-), nitrate (NO3 -), acetate (CH3COO-), and bisulfate (HSO4 -) is performed by a boron-based molecular receptor, N,N,N,3,5-pentamethyl-4-{2-thia-9-boratricyclo[8.4.0.03,8]tetradeca-1(10),3(8),4,6,11,13-hexaen-9-yl}anili-nium (1), and the three newly designed receptors from it. Thermodynamics, electronic structure, and photophysical properties are computed by employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT) to explore selective sensing of these anions and its mechanism. Free-energy changes (ΔG) and binding energies (ΔE) suggest that among these anions, only binding of CN- and F- is thermodynamically feasible with a very strong binding affinity with the receptors. Boron atoms containing positive natural charges act as the electrophilic centers to bind the anions involving a 2p-2p orbital overlap resulting in charge transfer. In the receptor-analyte complexes with CN- and F-, fluorescence is quenched due to the intramolecular charge transfer transitions (π-π* transitions in the case of the receptors lead to fluorescence), internal conversion, and associated configurational changes. Among the six tested functionals, CAM-B3LYP/6-31G(d) is found to be the most accurate one. The designed receptors are better fluorescent probes for F- and CN-, demonstrating their importance for the practical utility.

SELECTION OF CITATIONS
SEARCH DETAIL
...