Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 804, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001960

ABSTRACT

Schizophrenia is a neuropsychiatric disorder characterized by various symptoms such as hallucinations, delusions, and disordered thinking. The etiology of this disease is unknown; however, it has been linked to many microdeletion syndromes that are likely to contribute to the pathology of schizophrenia. In this review we have comprehensively analyzed the role of various microdeletion syndromes, like 3q29, 15q13.3, and 22q11.2, which are known to be involved with schizophrenia. A variety of factors lead to schizophrenia phenotypes, but copy number variants that disrupt gene regulation and impair brain function and cognition are one of the causes that have been identified. Multiple case studies have shown that loss of one or more genes in the microdeletion regions lead to brain activity defects. In this article, we present a coherent paradigm that connects copy number variations (CNVs) to numerous neurological and behavioral abnormalities associated with schizophrenia. It would be helpful in understanding the different aspects of the microdeletions and how they contribute in the pathophysiology of schizophrenia.


Subject(s)
Chromosome Deletion , DNA Copy Number Variations , Schizophrenia , Humans , Schizophrenia/genetics , DNA Copy Number Variations/genetics , Phenotype , Chromosomes, Human, Pair 15/genetics , Genetic Predisposition to Disease , Intellectual Disability/genetics , Chromosome Disorders/genetics , Developmental Disabilities , Chromosomes, Human, Pair 3 , Seizures
2.
Funct Integr Genomics ; 23(2): 174, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37219715

ABSTRACT

Microdeletion of the 15q11.2 BP1-BP2 region, also known as Burnside-Butler susceptibility region, is associated with phenotypes like delayed developmental language abilities along with motor skill disabilities, combined with behavioral and emotional problems. The 15q11.2 microdeletion region harbors four evolutionarily conserved and non-imprinted protein-coding genes: NIPA1, NIPA2, CYFIP1, and TUBGCP5. This microdeletion is a rare copy number variation frequently associated with several pathogenic conditions in humans. The aim of this study is to investigate the RNA-binding proteins binding with the four genes present in 15q11.2 BP1-BP2 microdeletion region. The results of this study will help to better understand the molecular intricacies of the Burnside-Butler Syndrome and also the possible involvement of these interactions in the disease aetiology. Our results of enhanced crosslinking and immunoprecipitation data analysis indicate that most of the RBPs interacting with the 15q11.2 region are involved in the post-transcriptional regulation of the concerned genes. The RBPs binding to this region are found from the in silico analysis, and the interaction of RBPs like FASTKD2 and EFTUD2 with exon-intron junction sequence of CYFIP1 and TUBGCP5 has also been validated by combined EMSA and western blotting experiment. The exon-intron junction binding nature of these proteins suggests their potential involvement in splicing process. This study may help to understand the intricate relationship of RBPs with mRNAs within this region, along with their functional significance in normal development, and lack thereof, in neurodevelopmental disorders. This understanding will help in the formulation of better therapeutic approaches.


Subject(s)
Chromosomes, Human , DNA Copy Number Variations , Humans , RNA-Binding Proteins , Introns , Peptide Elongation Factors , Ribonucleoprotein, U5 Small Nuclear
3.
Metab Brain Dis ; 37(5): 1309-1316, 2022 06.
Article in English | MEDLINE | ID: mdl-35435609

ABSTRACT

Circular RNAs (CircRNAs) are a sub-class of non-coding RNA, which are covalently closed at the ends through a non-canonical process called, backsplicing from the precursor linear RNAs. These molecules are involved in several biological phenomena including regulation of gene expression, synaptic plasticity, and cognition. Several studies have shown that circRNA are present abundantly inside the mammalian brain and they are believed to be associated with the development of neurons and neuronal functions. It is also evident that alterations in intracellular and extracellular levels of circRNAs are linked with various neurological and neuropsychiatric disorders including schizophrenia (SZ). Detailed studies of circRNAs are required to decode the molecular mechanism behind the onset of SZ and the related biological activities during disease progression. This can help unravel their role in this neurobehavioral disorder and develop effective therapeutics against the disease. The present review mainly focuses on the expression and activities of the circRNAs in the post-mortem brain, peripheral blood, and exosomes. It also gives an insight into the role of circRNA interaction with RNA binding proteins (RBPs) and nucleotide modification and their therapeutic potential in the context of schizophrenia.


Subject(s)
Exosomes , Schizophrenia , Animals , Brain , Mammals/genetics , RNA/genetics , RNA, Circular/genetics , Schizophrenia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...