Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
World J Microbiol Biotechnol ; 38(8): 141, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35710855

ABSTRACT

Mineral lubricating oils are widely used in various industrial sectors for their applications in maintenance and functioning of machineries. However, indiscriminate dumping of these used oils have resulted in polluting the natural reservoirs which subsequently destroys ecological balance. Bacteria can emulsify or lower surface tension between phases of immiscible substrates and can acquire them as their carbon and energy sources. Such a phenomenon is mediated by production of extracellular polymers which can function as eminent surface active compounds based on their surfactant or emulsifying nature. The comparison between bacterial strains (Gram-positive Bacillus stratosphericus A15 and Gram-negative Ochrobactrum pseudintermedium C1) on utilization of pure straight chain hydrocarbons, waste mineral lubricating oils as sole carbon source and chemical characterization of the synthesized surface active compounds were studied. Characterization analysis by Ultraviolet Visible spectrophotometry, Fourier transform infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy, Carbon-Hydrogen-Nitrogen analysis has given detailed structural elucidation of surface active compounds. The contrasting nature of bacterial strains in utilization of different hydrocarbons of waste mineral lubricating oils was observed in Gas Chromatography-Mass Spectroscopy analysis. The variation between both strains in utilization of hydrocarbons can be manifested in chemical structural differences and properties of the produced surface active compounds. Scanning Electron Microscopy has given detailed insight into the microstructural difference of the compounds. The utilization of lubricating oils can address waste disposal problem and offer an economical feasible approach for bacterial production of surface active compounds. Our results suggest that these surface active compounds can maneuver applications in environmental bioremediation and agriculture, pharmaceuticals and food as functional biomaterials.


Subject(s)
Bacillus , Ochrobactrum , Biodegradation, Environmental , Carbon , Hydrocarbons , Minerals , Plant Oils , Surface-Active Agents
2.
Int Microbiol ; 24(3): 441-453, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33987705

ABSTRACT

Globally, the underlying peril of cumulative toxicity of heavy metals in water bodies contaminated by industrial effluents is a matter of great concern to the environmentalists. Heavy metals like lead, cadmium, and nickel are particularly liable for this. Such toxic water is not only hazardous to human health but also harmful to aquatic animals. Remedial measures are being taken by physico-chemical techniques, but most of them are neither eco-friendly nor cost-effective. Biological means like bioaccumulation of heavy metals by viable bacteria are often tedious. In the present study, biosorption of heavy metals is successfully expedited by surfactant exopolysaccharide (SEPS) of Ochrobactrum pseudintermedium C1 as a simple, safe, and economically sustainable option utilizing an easily available and cost-effective substrate like molasses extract. Its efficacy in bioremediation of toxic heavy metals like cadmium, nickel, and lead have been studied by UV-Vis spectrophotometry and verified by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). FTIR and zeta potential studies have also been carried out to explore this novel biosorption potential. Results are conclusive and promising. Moreover, this particular SEPS alone can remediate all these three toxic heavy metals in water. For futuristic applications, it might be a prospective and cost-effective resource for bioremediation of toxic heavy metals in aqueous environment.


Subject(s)
Metals, Heavy/metabolism , Ochrobactrum/metabolism , Polysaccharides, Bacterial/metabolism , Surface-Active Agents/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Cadmium/metabolism , Cost-Benefit Analysis , Lead/metabolism , Microscopy, Electron, Scanning , Nickel/metabolism , Polysaccharides, Bacterial/ultrastructure
3.
Curr Microbiol ; 77(11): 3224-3239, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32876713

ABSTRACT

The incessant need to increase crop yields has led to the development of many chemical fertilizers containing NPK (nitrogen-phosphorous-potassium) which can degrade soil health in the long term. In addition, these fertilizers are often leached into nearby water bodies causing algal bloom and eutrophication. Bacterial secondary metabolites exuded into the extracellular space, termed extracellular polymeric substances (EPS) have gained commercial significance because of their biodegradability, non-toxicity, and renewability. In many habitats, bacterial communities faced with adversity will adhere together by production of EPS which also serves to bond them to surfaces. Typically, hygroscopic, EPS retain moisture in desiccating conditions and modulate nutrient exchange. Many plant growth-promoting bacteria (PGPR) combat harsh environmental conditions like salinity, drought, and attack of pathogens by producing EPS. The adhesive nature of EPS promotes soil aggregation and restores moisture thus combating soil erosion and promoting soil fertility. In addition, these molecules play vital roles in maintaining symbiosis and nitrogen fixation thus enhancing sustainability. Thus, along with other commercial applications, EPS show promising avenues for improving agricultural productivity thus helping to address land scarcity as well as minimizing environmental pollution.


Subject(s)
Extracellular Polymeric Substance Matrix , Sustainable Development , Agriculture , Bacteria , Fertilizers , Soil
4.
Microbiol Res ; 236: 126466, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32193126

ABSTRACT

Since the advent of biologics in human welfare various bio-molecules have been explored. Different bacterial exopolysaccharides have proved their worth in many industrial and commercial applications. In this perspective, while exploring a surfactant exopolysaccharide of Ochrobactrum pseudintermedium C1, it is strikingly observed that it possesses a potent antibacterial property which encourages its bio-medical applications. Following isolation and purification of the said exopolysaccharide, its structural configuration and functional attributes are studied by several analytical procedures involving FTIR, 13C- NMR, CHN-analysis, estimation of zeta potential, XRD-study and digital tensiometry. When treated with pathological samples in vitro, it distinctly elicits its antibacterial property by exhibiting a characteristic zone of inhibition. Combined with a standard antibiotic (like ciprofloxacin), it enhances the action of antibiotic also. Mechanism of its antibacterial action is evaluated by crystal violet entrapment assay with UV-vis spectrophotometry, bacterial cell viability assay by trypan blue staining and SEM study. Results show that its basic surfactant property, anionic character, crystalline nature and scaffolding architecture are supposed to facilitate its antibacterial property which is manifested by its capability of disrupting bacterial cell envelope causing eventual cell death. In the current global scenario, an increasing threat of antibiotic resistance is prevailing due to their indiscriminate use. If used as an adjuvant with a judicious dose of antibiotic, this bio-molecule might play a significant role in bio-medicine to combat such threat.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Ochrobactrum , Polysaccharides, Bacterial/biosynthesis , Surface-Active Agents/metabolism , Anti-Bacterial Agents/metabolism , Chemotherapy, Adjuvant , Ciprofloxacin/pharmacology , Escherichia coli/drug effects , Humans , In Vitro Techniques , Microbial Sensitivity Tests , Ochrobactrum/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Staphylococcus aureus/drug effects
5.
J Basic Microbiol ; 59(8): 820-833, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31232462

ABSTRACT

During production and characterization of exopolysaccharides (EPS) of Ochrobactrum pseudintermedium C1, it was observed that an experimental change in the basic hydrocarbon type of substrate for bacterial utilization led to elicitation of different surface-active properties in the EPS produced. In the sugar substrate, it elicited surfactant property, while in oil substrates it elicited emulsifying property, which indicated that the EPS might be different. Consequently, attention was focused on a detailed analysis of this substrate-specific EPS. Utilizing waste sugar, edible, and mineral oil substrates, EPS produced in each situation was characterized. Besides estimating surface activity and thermostability, each substrate-specific EPS was analyzed by Fourier-transform infrared spectroscopy, gas chromatography-mass spectroscopy, 1 H-nuclear magnetic resonance, and matrix-assisted laser desorption/ionization-time of flight mass spectroscopy to find any structural difference. The results were significantly contrasting although the similarity in molecular mass suggested a basic similarity in polysaccharide structure. Morphological differences were also evident both macroscopically and microscopically with scanning electron microscopy. As the surface-active property of EPS was dependent on the substrate utilized, their structural differences might account for it. These diverse surface activities of EPS produced by a single bacterial strain simply by changing the nature of substrate would also augment their bioapplications. Moreover, utilization of waste and easily available substrates should make such applications convenient, ecofriendly, and cost-worthy.


Subject(s)
Hydrocarbons/metabolism , Ochrobactrum/chemistry , Polysaccharides, Bacterial/chemistry , Culture Media/metabolism , Microscopy, Electron, Scanning , Molecular Weight , Ochrobactrum/growth & development , Ochrobactrum/metabolism , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/ultrastructure , Solubility , Surface Properties , Temperature
6.
Appl Microbiol Biotechnol ; 102(4): 1587-1598, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29344694

ABSTRACT

Bacterial extracellular polymeric substances, which are basically bacterial metabolites, have currently become a subject of great concern of modern day microbiologists and biotechnologists. Among these metabolites, bacterial exopolysaccharides or EPS, in particular, have gained a significant importance. EPS are formed by the bacteria in their late exponential or stationary phase of growth under special situations for specific purposes. They take part in the formation of bacterial biofilms. There is a great diversity in the types of EPS. Strikingly enough, a same species of bacterium can produce different types of EPS under different situations. The importance of EPS is largely because of their different applications in various industries. Now that the bacterial EPS has got the potentiality to become an upcoming tool in various futuristic applications of human benefit, the focus currently develops towards how better they can be produced in the laboratory by promoting the favorable factors for their production. While studying with different EPS forming bacteria, both the intrinsic factors like genetic configuration of the bacteria and the extrinsic factors like culture conditions under the influence of different physico-chemical parameters in order to maximize the EPS production have been taken into consideration. Both the factors have proved their worth. Hence, towards a better outcome for EPS production, it is indicated that a genetic manipulation of the bacteria should be synchronized with a proper selection of its culture condition by controlling different physico-chemical parameters.


Subject(s)
Bacteria/metabolism , Industrial Microbiology/methods , Metabolic Engineering/methods , Polysaccharides, Bacterial/metabolism , Bacteria/genetics , Bacteria/growth & development , Bioreactors/microbiology , Chemical Phenomena , Culture Media/chemistry , Polysaccharides, Bacterial/genetics , Temperature
7.
Biochim Biophys Acta Biomembr ; 1860(2): 579-585, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28988129

ABSTRACT

Besides potential surface activity and some beneficial physical properties, biosurfactants express antibacterial activity. Bacterial cell membrane disrupting ability of rhamnolipid produced by Pseudomonas aeruginosa C2 and a lipopeptide type biosurfactant, BS15 produced by Bacillus stratosphericus A15 was examined against Staphylococcus aureus ATCC 25923 and Escherichia coli K8813. Broth dilution technique was followed to examine minimum inhibitory concentration (MIC) of both the biosurfactants. The combined effect of rhamnolipid and BS15 against S. aureus and E. coli showed synergistic activity by expressing fractional inhibitory concentration (FIC) index of 0.43 and 0.5. Survival curve of both the bacteria showed bactericidal activity after treating with biosurfactants at their MIC obtained from FIC index study as it killed >90% of initial population. The lesser value of MIC than minimum bactericidal concentration (MBC) of the biosurfactants also supported their bactericidal activity against both the bacteria. Membrane permeability against both the bacteria was supported by amplifying protein release, increasing of cell surface hydrophobicity, withholding capacity of crystal violet dye and leakage of intracellular materials. Finally cell membrane disruption was confirmed by scanning electron microscopy (SEM). All these experiments expressed synergism and effective bactericidal activity of the combination of rhamnolipid and BS15 by enhancing the bacterial cell membrane permeability. Such effect of the combination of rhamnolipid and BS15 could make them promising alternatives to traditional antibiotic in near future.


Subject(s)
Escherichia coli/drug effects , Glycolipids/pharmacology , Lipopeptides/pharmacology , Staphylococcus aureus/drug effects , Surface-Active Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Bacillus/chemistry , Cell Membrane Permeability/drug effects , Drug Synergism , Escherichia coli/growth & development , Escherichia coli/ultrastructure , Kinetics , Microbial Sensitivity Tests , Microbial Viability/drug effects , Microscopy, Electron, Scanning , Pseudomonas aeruginosa/chemistry , Staphylococcus aureus/growth & development , Staphylococcus aureus/ultrastructure
8.
Bioprocess Biosyst Eng ; 38(11): 2095-106, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26271337

ABSTRACT

The growth kinetics and biodegradation of two waste lubricating oil samples including waste engine oil (WEO) and waste transformer oil (WTO) were studied using pure isolates and mixed culture of Ochrobactrum sp. C1 and Bacillus sp. K1. The mixed culture significantly influenced degradation efficiency of the pure isolates through bioaugmentation process. In particular, the mixed culture was capable of growing on various n-alkanes and polycyclic aromatic hydrocarbons and was able to tolerate unusually high concentrations of waste lubricants (WEO-86.0 g/L and WTO-81.5 g/L). The initial concentration of waste lubricating oils has been varied in the range of 1-10 % (v/v). Under this experimental range, the bacterial growth has been observed to follow Haldane-type kinetics characterizing the presence of substrate inhibition. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: µ max = 0.078 h(-1), K S = 23.101 g/L, K i = 43.844 g/L for WEO; and µ max = 0.044 h(-1), K S = 10.662 g/L, K i = 58.310 g/L for WTO. The values of intrinsic kinetic parameters, like specific growth rate µ max, half saturation constant, K S, inhibition constant, K i and the maximum substrate concentration, S max and growth yield coefficient Y x/s , have been determined using each model hydrocarbon and their mixture as limiting substrate. Relative changes in the values of the kinetic parameters have been correlated to the number of carbon atoms present in n-alkanes. The metabolites from degradation of model hydrocarbon compounds have been identified by GC-MS to elucidate the possible pathway of waste lubricating oil degradation process.


Subject(s)
Bacillus/growth & development , Bioreactors , Microbial Consortia , Mineral Oil/metabolism , Models, Biological , Ochrobactrum/growth & development , Biodegradation, Environmental
9.
3 Biotech ; 5(5): 807-817, 2015 Oct.
Article in English | MEDLINE | ID: mdl-28324536

ABSTRACT

A potential degrader of paraffinic and aromatic hydrocarbons was isolated from oil-contaminated soil from steel plant effluent area in Burnpur, India. The strain was investigated for degradation of waste lubricants (waste engine oil and waste transformer oil) that often contain EPA (Environmental Protection Agency, USA) classified priority pollutants and was identified as Ochrobactrum sp. C1 by 16S rRNA gene sequencing. The strain C1 was found to tolerate unusually high waste lubricant concentration along with emulsification capability of the culture broth, and its degradation efficiency was 48.5 ± 0.5 % for waste engine oil and 30.47 ± 0.25 % for waste transformer oil during 7 days incubation period. In order to get optimal degradation efficiency, a three level Box-Behnken design was employed to optimize the physical parameters namely pH, temperature and waste oil concentration. The results indicate that at temperature 36.4 °C, pH 7.3 and with 4.6 % (v/v) oil concentration, the percentage degradation of waste engine oil will be 57 % within 7 days. At this optimized condition, the experimental values (56.7 ± 0.25 %) are in a good agreement with the predicted values with a calculated R 2 to be 0.998 and significant correlation between biodegradation and emulsification activity (E 24 = 69.42 ± 0.32 %) of the culture broth toward engine oil was found with a correlation coefficient of 0.972. This is the first study showing that an Ochrobactrum sp. strain is capable of degrading waste lubricants, which might contribute to the bioremediation of waste lubricating oil-contaminated soil.

SELECTION OF CITATIONS
SEARCH DETAIL