Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 238(Pt 2): 117195, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37758117

ABSTRACT

Advanced steam explosion pretreatment, i.e., the Thermal hydrolysis process (THP) is applied mainly to improve the sludge solubilization and subsequent methane yield in the downstream anaerobic digestion (AD) process. However, the potential of THP in pretreating the high solids retention time (SRT) sludges, mitigating the risk of emerging organic micropollutants and effects on anaerobic microbiome in digester remains unclear. In this study, sludge from a sequencing batch reactor (SBR) system operating at a SRT of 40 days was subjected to THP using a 5 L pilot plant at the temperature ranges of 120-180 °C for 30-120 min. The effect of THP on organics solubilization, methane yield, organic micropollutant removal, and microbial community dynamics was studied. The highest methane yield of 507 mL CH4/g VSadded and volatile solids (VS) removal of 54% were observed at 160°C- 30min THP condition, i.e., 4.1 and 2.6 times higher than the control (123 mL CH4/gVSadded, 20.7%), respectively. The experimental values of hydrolysis coefficient and methane yield have been predicted using Modified Gompertz, First order, and Logistics models. The observed values fitted well with all three models showing an R2 value between 0.96 and 1.0. THP pretreated sludges showed >80% removal of Trimethoprim, Enrofloxacin, Ciprofloxacin, and Bezafibrate. However, Carbamazepine, 17α-ethinylestradiol, and Progesterone showed recalcitrant behavior, resulting in less than 50% removal. Microbial diversity analysis showed the dominance of Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidetes, collectively accounting for >70-80% of bacterial reads. They are mainly responsible for the fermentation of complex biomolecules like polysaccharides, proteins, and lipids. The THP-mediated anaerobic digestion of sludge shows better performance than the control digestion, improved methane yield, higher VS and micropollutants removal, and a diverse microbiome in the digester.


Subject(s)
Sewage , Steam , Sewage/microbiology , Anaerobiosis , Methane , Fermentation , Hydrolysis , Bioreactors
2.
Environ Res ; 235: 116673, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37454796

ABSTRACT

We quantified the occurrences and seasonal variations of the target endocrine disrupting chemicals (EDCs) at four (two major municipals, and two academic institutions) WWTPs in Dehradun city, Uttarakhand, India. The results showed estrone in higher concentrations at µgL-1 levels in influent among the WWTPs, compared to triclosan (TCS) at ngL-1 levels. An astounding concentration of 123.95 µgL-1 was recorded for the estrone in the influent, which is to date the highest ever recorded, globally. Statistical data treatment was performed to test the distribution of the data (Shapiro-Wilk, Anderson-Darling, Lilliefors, and Jarque-Bera tests), and the significant difference between the mean of the wastewater sample population (ANOVA: F statistics, p values, Mann-Whitney test, Tukey's and Dunn's post hoc analysis). Statistical data treatment indicated EDCs concentration with a bi-modal distribution. The Shapiro-Wilk, Anderson-Darling, Lilliefors, and Jarque-Bera tests elucidate a non-normal distribution for the EDCs sample data. A statistically significant difference (F = 8.46; p < 0.0001) in the seasonal data for the abundance of the target EDCs at the WWTPs have been observed. Highest and significantly different mean EDCs concentrations were recorded during the monsoon, compared to the spring (p = 0.025) and summer (p = 0.0004) seasons in the influent waters. The mean influent concentrations of TCS and estrone in monsoon were 66.45 ngL-1 and 78.02 µgL-1, respectively. Maximum removals were recorded for TCS, while maximum negative removal of ∼293% was observed for estrone in the WWTPs. Particularly, the high levels of estrone in the wastewater pose a significant threat as estrone presence could be led to feminization, dysregulation of reproduction in organisms, and carcinogenesis processes in the environment. This study critically highlights the limitation of the WWTPs in the treatment, degradation, and assimilation of EDCs leading to their hyperaccumulation at WWTP effluents, thereby posing a substantial threat to nearby aquatic ecosystems, human health, and the ecological balance of the region.


Subject(s)
Endocrine Disruptors , Triclosan , Water Pollutants, Chemical , Water Purification , Humans , Estrone/analysis , Wastewater , Endocrine Disruptors/analysis , Waste Disposal, Fluid/methods , Prevalence , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , India
3.
Sci Total Environ ; 824: 153757, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35151754

ABSTRACT

Environmental compartments are repositories of probably thousands of emerging contaminants (ECs) released along with treated/untreated wastewater. Despite extensive studies on the detection of ECs in surface water, other environmental compartments such as sediments and groundwater are yet to be thoroughly investigated. To assess the heavy anthropogenic impact on the environment, 24 environmental samples comprising of surface water, sediment and groundwater collected from the Yamuna River basin of India were analyzed via target and suspect screening. The surface water and sediment samples were collected from upstream and downstream of densely populated cities and towns situated along the heavily contaminated river Yamuna. The groundwater samples were collected from shallow drinking water wells of the catchment. Liquid chromatography tandem mass-spectroscopy was used to quantify 10 widely consumed pharmaceuticals in the samples. The study also analyzed the potential health hazards posed by the quantified contaminants. In order to evaluate further, the surface water and groundwater samples were subjected to high resolution mass spectrometry (HRMS) screening against a library resulting in a list of 450 ECs in the surface water and 309 ECs in the groundwater. Agricultural chemicals and pharmaceuticals found abundantly in the samples and half of whom were reported first time. The risk quotient was calculated to assess the potential hazard of the target analytes.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Groundwater/chemistry , Pharmaceutical Preparations , Rivers/chemistry , Water/analysis , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 782: 146741, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33839659

ABSTRACT

River Yamuna is one of the major lifelines of Northern India. The study quantified 16 target compounds including pharmaceuticals, personal care products, and hormones in the Yamuna river. Surface water samples were collected from 13 locations spanning 575 km along the river, and from two of its tributaries, Hindon river and Hindon canal. Spatiotemporal variations in the occurrence of the target compounds at the 13 sites during summer and post-monsoon season were investigated. Caffeine, estrone, gemfibrozil, sulfamethoxazole, testosterone and trimethoprim were found in all the samples, indicating substantial usage and/or persistence in the environment. The mean concentration of the target compounds ranged from 25.5 to 2187.5 ng/L. Higher concentrations were detected during the post monsoon, compared to the summer season. The highest concentration detected was of trimethoprim (8807.6 ng/L) during summer sampling, followed by caffeine (6489.9 ng/L) and gemfibrozil (2991 ng/L), during the post-monsoon sampling. The lowest concentration detected was of estrone (10.7 ng/L), during the summer sampling. The runoff from the catchment areas is one of the contributing factors for the increased concentration of the compounds during post monsoon. During summer, the river bed goes dry, facilitating the adsorption of the compounds onto the river bed sediments. The three sampling locations Okhla barrage (ponding of water from drains traversing Delhi), confluence of Yamuna with Shahadara drain (industrial and poultry cluster, and Ghazipur dumping yard) and Agra city (industrial clusters) were the hotspots in terms of total concentration of the target compounds. The study also reported the presence of PPCPs and hormones in the finished drinking water of two DWTPs at Mathura and Agra.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Cities , Environmental Monitoring , India , Rivers , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...