Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 206(7): 294, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850339

ABSTRACT

Antimicrobial resistance is a prevalent problem witnessed globally and creating an alarming situation for the treatment of infections caused by resistant pathogens. Available armaments such as antibiotics often fail to exhibit the intended action against resistant pathogens, leading to failure in the treatments that are causing mortality. New antibiotics or a new treatment approach is necessary to combat this situation. P. aeruginosa is an opportunistic drug resistant pathogen and is the sixth most common cause of nosocomial infections. P. aeruginosa due to its genome organization and other factors are exhibiting resistance against drugs. Bacterial biofilm formation, low permeability of outer membrane, the production of the beta-lactamase, and the production of several efflux systems limits the antibacterial potential of several classes of antibiotics. Combination of phytoconstituents with antibiotics is a promising strategy to combat multidrug resistant P. aeruginosa. Phytoconstituents such as flavonoids, terpenoids, alkaloids, polypeptides, phenolics, and essential oils are well known antibacterial agents. In this review, the activity of combination of the phytoconstituents and antibiotics, and their corresponding mechanism of action was discussed elaborately. The combination of antibiotics and plant-derived compounds exhibited better efficacy compared to antibiotics alone against the antibiotic resistance P. aeruginosa infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Phytochemicals , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Phytochemicals/pharmacology , Phytochemicals/chemistry , Biofilms/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests
2.
ACS Sens ; 7(12): 3720-3729, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36383745

ABSTRACT

The dengue virus (DENV) infection commonly triggers threatening seasonal outbreaks all around the globe (estimated yearly infections are in the order of 100 million, combining all the viral serotypes), testifying the need for early detection to facilitate disease management and patient recovery. The laboratory-based testing procedures for detecting DENV infection early enough are challenged by the need of resourced settings that result in inevitable cost penalty and unwarranted delay in obtaining the test results due to distance-related factors with respect to the patient's location. Recognizing that the introduction of alternative extreme point-of-care technologies for early detection may potentially mitigate this challenge largely, we develop here a multiplex paper/polymer-based detection strip that interfaces with an all-in-one simple portable device, synchronizing the pipeline of nucleic acid isolation, isothermal amplification, and colorimetric analytics as well as readout for detecting all the four serotypes of dengue viruses in around 30 min from about 50 µL of human blood serum with high specificity and sensitivity. Aligned with the mandatory guidelines of the World Health Organization, the ultralow-cost test is ideal for dissemination at different community centers via a user-friendly device interface, not only as a critical surveillance measure in recognizing the potential cocirculation of the infection across regions that are hyperendemic for all four DENV serotypes but also for facilitating effective monitoring of patients infected by any one of the particular viral serotypes as well as timely administration of life-saving measures on need.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue Virus/genetics , Dengue/diagnosis , Serogroup , Microfluidics , Sensitivity and Specificity
3.
ACS Appl Bio Mater ; 5(2): 862-872, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35133127

ABSTRACT

Advancements in developing antipathogenic interfaces are critical in mitigating the risk of infection spread amid the practical limitations of hygienic control in crowded and resource-limited settings. Such requirements are also extremely compelling in busy patient care centers including intensive care units where the statutory maintenance of environmental standards often appears to be impractical because of the overflooded patient loads. While advances in surface engineering have emerged with great promises to cater these needs, the underlying technological complexities appear to be prohibitive against practicable applications amid constrained technological resources. Here, we harnessed the role of unique topographical features of the skin of Ptyas mucosa (oriental rat snake), a commonly found snake species in south and southeast Asia, in terms of exhibiting supreme antifouling properties via natural inheritance, leading to pathogenic resistance. Our characterization studies unveiled that unlike the previously reported vertical pillars, hairs, and needles, arrays of horizontal denticulation, offering favorable topographical characteristics of structured roughness and hierarchical features, emerged to be responsible for exhibiting the desired functionalities. We subsequently adapted these structures with certain simplifications by biomimicking artificially engineered topologies on a polydimethylsiloxane (PDMS) surface. The resulting surfaces were proven to offer dual antimicrobial mechanisms such as resistances to adhesion or colonization of different bacteria (Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus mutans) and facilitation for cell wall deformation and programmed cell death as evidenced by an abundance of oxidative stresses. These results opened up strategies of producing biomimetic surface textures and their effective implementation against pathogenic invasion in a plethora of applications ranging from medical implants to marine propulsion.


Subject(s)
Pseudomonas aeruginosa , Staphylococcus aureus , Animals , Escherichia coli , Klebsiella pneumoniae , Snakes
4.
J Mol Biol ; 432(7): 1952-1977, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32001251

ABSTRACT

When the herpes simplex virus (HSV) genome enters the nucleus for replication and transcription, phase-segregated nuclear protein bodies called Promyelocytic leukemia protein nuclear bodies (PML NBs) colocalize with the genome and repress it. HSV encodes a small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligase (STUbL) infected cell polypeptide 0 (ICP0) that degrades PML NBs to alleviate the repression. The molecular details of the mechanism used by ICP0 to target PML NBs are unclear. Here, we identify a bona fide SUMO-interacting motif in ICP0 (SIM-like sequence [SLS] 4) that is essential and sufficient to target SUMOylated proteins in PML NBs such as the PML and Sp100. We shown that phosphorylation of SLS4 creates new salt bridges between SUMO and SLS4, increases the SUMO/SLS4 affinity, and switches ICP0 into a potent STUbL. HSV activates the Ataxia-telangiectasia-mutated kinase-Checkpoint kinase 2 (ATM-Chk2) pathway to regulate the cell cycle of the host. We report that the activated Chk2 also phosphorylates ICP0 at SLS4 and enhances its STUbL activity. Our results uncover that a viral STUbL counters antiviral response by exploiting an unprecedented cross-talk of three post-translational modifications: ubiquitination, SUMOylation, and phosphorylation.


Subject(s)
Checkpoint Kinase 2/metabolism , Herpes Simplex/virology , Herpesvirus 1, Human/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Viral Proteins/metabolism , Checkpoint Kinase 2/chemistry , Checkpoint Kinase 2/genetics , HEK293 Cells , Humans , Phosphorylation , Protein Conformation , Protein Domains , Small Ubiquitin-Related Modifier Proteins/chemistry , Small Ubiquitin-Related Modifier Proteins/genetics , Sumoylation , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Replication
5.
Arch Virol ; 162(9): 2727-2736, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28589512

ABSTRACT

Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) is responsible for morbidity of the Indian non-mulberry silkworm, A. mylitta. AmCPV belongs to the family Reoviridae and has 11 double-stranded (ds) RNA genome segments (S1-S11). Segment 2 (S2) encodes a 123-kDa polypeptide with RNA-dependent RNA polymerase (RdRp) activity. To examine the RNA-binding properties of the viral polymerase, the full-length RdRp and its three domains (N-terminal, polymerase and C-terminal domains) were expressed in Escherichia coli BL21 (DE3) cells with hexahistidine and trigger factor tag fused consecutively at its amino terminus, and the soluble fusion proteins were purified. The purified full-length polymerase specifically bound to the 3' untranslated region (3'-UTR) of a viral plus-sense (+) strand RNA with strong affinity regardless of the salt concentrations, but the isolated polymerase domain of the enzyme exhibited poor RNA-binding ability. Further, the RdRp recognition signals were found to be different from the cis-acting signals that promote minus-sense (-) strand RNA synthesis, because different internal regions of the 3'-UTR of the (+) strand RNA did not effectively compete out the binding of RdRp to the intact 3'-UTR of the (+) strand RNA, but all of these RNA molecules could serve as templates for (-) strand RNA synthesis by the polymerase.


Subject(s)
Escherichia coli/metabolism , Nucleopolyhedroviruses/enzymology , Nucleopolyhedroviruses/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Protein Binding , Protein Domains , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics
6.
Paediatr Anaesth ; 26(12): 1204-1205, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27781331

ABSTRACT

Craniopagus conjoined twins are rare, and the chance that an anesthesiologist might face the challenge of providing anesthesia for this condition is very rare. The incidence of conjoined twins ranges from 1 : 50 000 to 1 : 200 000 births. We describe the anesthetic management of a pair of premature craniopagus conjoined twins posted for emergency surgery prior to their separation.


Subject(s)
Anesthesia/methods , Anorectal Malformations/surgery , Intestinal Obstruction/surgery , Twins, Conjoined/surgery , Adjuvants, Anesthesia , Anesthetics, Inhalation , Anesthetics, Intravenous , Anorectal Malformations/complications , Atropine , Female , Fentanyl , Humans , Infant, Newborn , Infant, Premature , Intestinal Obstruction/etiology , Methyl Ethers , Sevoflurane
7.
J Mol Graph Model ; 61: 160-74, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26264734

ABSTRACT

Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) contains 11 double stranded RNA genome segments and infects tasar silkworm A. mylitta. RNA-dependent RNA polymerase (RdRp) is reported as a key enzyme responsible for propagation of the virus in the host cell but its structure function relationship still remains elusive. Here a computational approach has been taken to compare sequence and secondary structure of AmCPV RdRp with other viral RdRps to identify consensus motifs. Then a reliable pairwise sequence alignment of AmCPV RdRp with its closest sequence structure homologue λ3 RdRp is done to predict three dimensional structure of AmCPV RdRp. After comparing with other structurally known viral RdRps, important sequence and/or structural features involved in substrate entry or binding, polymerase reaction and the product release events have been identified. A conserved RNA pentanucleotide (5'-AGAGC-3') at the 3'-end of virus genome is predicted as cis-acting signal for RNA synthesis and its docking and simulation study along with the model of AmCPV RdRp has allowed to predict mode of template binding by the viral polymerase. It is found that template RNA enters into the catalytic center through nine sequence-independent and two sequence-dependent interactions with the specific amino acid residues. However, number of sequence dependent interactions remains almost same during 10 nano-second simulation time while total number of interactions decreases. Further, docking of N(7)-methyl-GpppG (mRNA cap) on the model as well as prediction of RNA secondary structure has shown the template entry process in the active site. These findings have led to postulate the mechanism of RNA-dependent RNA polymerization process by AmCPV RdRp. To our knowledge, this is the first report to evaluate structure function relationship of a cypoviral RdRp.


Subject(s)
Dinucleoside Phosphates/chemistry , Genome, Viral , RNA, Viral/chemistry , RNA-Dependent RNA Polymerase/chemistry , Reoviridae/chemistry , Viral Proteins/chemistry , Amino Acid Sequence , Animals , Catalytic Domain , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Sequence Data , Moths/virology , Nucleic Acid Conformation , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Reoviridae/enzymology , Sequence Alignment , Structural Homology, Protein , Substrate Specificity
8.
J Gen Virol ; 96(Pt 1): 95-105, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25228490

ABSTRACT

Cloning and sequencing of Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) genome segment S4 showed that it consists of 3410 nt with a single ORF of 1110 aa which could encode a protein of ~127 kDa (p127). Bioinformatics analysis showed the presence of a 5' RNA triphosphatase (RTPase) domain (LRDR), a S-adenosyl-l-methionine (SAM)-binding (GxGxG) motif and the KDKE tetrad of 2'-O-methyltransferase (MTase), which suggested that S4 may encode RTPase and MTase. The ORF of S4 was expressed in Escherichia coli as a His-tagged fusion protein and purified by nickel-nitrilotriacetic acid affinity chromatography. Biochemical analysis of recombinant p127 showed its RTPase as well as SAM-dependent guanine N(7)-and ribose 2'-O-MTase activities. A MTase assay using in vitro transcribed AmCPV S2 RNA having a 5' G*pppG end showed that guanine N(7) methylation occurred prior to the ribose 2'-O methylation to yield a m(7)GpppG/m(7)GpppGm RNA cap. Mutagenesis of the SAM-binding (GxGxG) motif (G831A) completely abolished N(7)- and 2'-O-MTase activities, indicating the importance of these residues for capping. From the kinetic analysis, the Km values of N(7)-MTase for SAM and RNA were calculated as 4.41 and 0.39 µM, respectively. These results suggested that AmCPV S4-encoded p127 catalyses RTPase and two cap methylation reactions for capping the 5' end of viral RNA.


Subject(s)
Acid Anhydride Hydrolases/genetics , Genome, Viral/genetics , Methyltransferases/genetics , Moths/virology , Reoviridae/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , Kinetics , Molecular Sequence Data , Protein Structure, Tertiary/genetics , RNA Caps/genetics , RNA, Viral/genetics , Recombinant Proteins/genetics , Reoviridae Infections/virology , S-Adenosylmethionine/genetics , Sequence Alignment , Viral Nonstructural Proteins/genetics
9.
Virol J ; 11: 53, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24649879

ABSTRACT

BACKGROUND: Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV), a cypovirus of Reoviridae family, infects non mulberry Indian silk worm, Antheraea mylitta, and contains eleven segmented double stranded RNA in its genome (S1-S11). Some of its genome segments (S1-S3, and S6-S11) have been previously characterized but genome segment encoding the viral guanylyltransferase which helps in RNA capping has not been characterized. RESULTS: In this study genome segment 5 (S5) of AmCPV was converted to cDNA, cloned and sequenced. S5 consisted of 2180 nucleotides, with one long ORF of 1818 nucleotides and could encode a protein of 606 amino acids with molecular mass of ~65 kDa (p65). Bioinformatics analysis showed presence of KLRS and HxnH motifs as observed in some other reoviral guanylyltransferase and suggests that S5 may encodes viral guanylyltransferase. The ORF of S5 was expressed in E. coli as 65 kDa his tagged fusion protein, purified through Ni-NTA chromatography and polyclonal antibody was raised. Immunoblot analysis of virion particles with the purified antibody showed specific immunoreactive band and suggests p65 as a viral structural protein. Functional analysis showed that recombinant p65 possesses guanylyltransferase activity, and transfers GMP moiety to the 5' diphosphate (A/G) ended viral RNA after the formation of p65-GMP complex for capping. Kinetic analysis showed K(m) of this enzyme for GTP and RNA was 34.24 uM and 98.35 nM, respectively. Site directed mutagenesis at K21A in KLRS motif, and H93A or H105A in HxnH motif completely abolished the autoguanylylation activity and indicates importance of these residues at these sites. Thermodynamic analysis showed p65-GTP interaction was primarily driven by enthalpy (ΔH = -399.1 ± 4.1 kJ/mol) whereas the p65-RNA interaction by favorable entropy (0.043 ± 0.0049 kJ/ mol). CONCLUSION: Viral capping enzymes play a critical role in the post transcriptional or post replication modification in case of RNA virus. Our results of cloning, sequencing and functional analysis of AmCPV S5 indicates that S5 encoded p65 through its guanylyltransferase activity can transfer guanine residue to the 5' end of viral RNA for capping. Further studies will help to understand complete capping process of cypoviral RNA during viral replication within the viral capsid.


Subject(s)
Moths/virology , Nucleopolyhedroviruses/enzymology , Nucleopolyhedroviruses/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , RNA, Viral/genetics , Sequence Analysis, DNA , Amino Acid Motifs , Animals , Chromatography, Affinity , Cloning, Molecular , Computational Biology , Escherichia coli/genetics , Gene Expression , Genome, Viral , Guanosine Monophosphate/metabolism , Molecular Sequence Data , Molecular Weight , Mutagenesis, Site-Directed , Nucleotidyltransferases/chemistry , RNA, Viral/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...