Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Immunology ; 171(4): 534-548, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38102962

ABSTRACT

Induction of antibodies (Abs) against the conformational CD4-induced (CD4i) epitope is frequent in HIV-1 infection. However, the mechanism of development of anti-CD4i Abs is unclear. We used anti-idiotypic (aID) monoclonal Abs (mAbs) of anti-CD4i mAbs to isolate anti-CD4i mAbs from infected subjects and track the causative antigens. One anti-aID mAb sorted from infected subjects by aID mAbs had the characteristics of anti-CD4i Abs, including IGHV1-69 usage and ability to bind to HIV-1 Env enhanced by sCD4. Critical amino acid sequences for the binding of six anti-aID mAbs, with shared idiotope to anti-CD4i mAbs, were analysed by phage display. The identified amino acid sequences showed similarity to proteins from human microbiota and infectious agents. Peptides synthesized from Caudoviricetes sp and Vibrio vulnificus based on the identified sequences were reactive to most anti-aID and some anti-CD4i mAbs. These results suggest that anti-CD4i Abs may evolve from B cells primed by microorganisms.


Subject(s)
HIV Infections , HIV-1 , Humans , Epitopes , HIV Antibodies , CD4 Antigens/metabolism , HIV Envelope Protein gp120
2.
Retrovirology ; 18(1): 23, 2021 08 21.
Article in English | MEDLINE | ID: mdl-34419098

ABSTRACT

BACKGROUND: Recent data suggest the importance of non-neutralizing antibodies (nnAbs) in the development of vaccines against HIV-1 because two types of nnAbs that recognize the coreceptor binding site (CoRBS) and the C1C2 region mediate antibody-dependent cellular-cytotoxicity (ADCC) against HIV-1-infected cells. However, many studies have been conducted with nnAbs obtained from subtype B-infected individuals, with few studies in patients with non-subtype B infections. RESULTS: We isolated a monoclonal antibody 1E5 from a CRF02_AG-infected individual and constructed two forms of antibody with constant regions of IgG1 or IgG3. The epitope of 1E5 belongs to the C1C2 of gp120, and 1E5 binds to 27 out of 35 strains (77 %) across the subtypes. The 1E5 showed strong ADCC activity, especially in the form of IgG3 in the presence of small CD4-mimetic compounds (CD4mc) and 4E9C (anti-CoRBS antibody), but did not show any neutralizing activity even against the isolates with strong binding activities. The enhancement in the binding of A32, anti-C1C2 antibody isolated from a patient with subtype B infection, was observed in the presence of 1E5 and the combination of 1E5, A32 and 4E9C mediated a strong ADCC activity. CONCLUSIONS: These results suggest that anti-C1C2 antibodies that are induced in patients with different HIV-1 subtype infections have common functional modality and may have unexpected interactions. These data may have implications for vaccine development against HIV-1.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV-1/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/metabolism , Antibody-Dependent Cell Cytotoxicity , CD4-Positive T-Lymphocytes/immunology , HIV-1/classification , Humans , Immunoglobulin G/immunology
3.
Cell Rep ; 36(2): 109385, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34237284

ABSTRACT

Administration of convalescent plasma or neutralizing monoclonal antibodies (mAbs) is a potent therapeutic option for coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, SARS-CoV-2 variants with mutations in the spike protein have emerged in many countries. To evaluate the efficacy of neutralizing antibodies induced in convalescent patients against emerging variants, we isolate anti-spike mAbs from two convalescent COVID-19 patients infected with prototypic SARS-CoV-2 by single-cell sorting of immunoglobulin-G-positive (IgG+) memory B cells. Anti-spike antibody induction is robust in these patients, and five mAbs have potent neutralizing activities. The efficacy of most neutralizing mAbs and convalescent plasma samples is maintained against B.1.1.7 and mink cluster 5 variants but is significantly decreased against variants B.1.351 from South Africa and P.1 from Brazil. However, mAbs with a high affinity for the receptor-binding domain remain effective against these neutralization-resistant variants. Rapid spread of these variants significantly impacts antibody-based therapies and vaccine strategies against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/immunology , COVID-19/virology , Cell Line , HEK293 Cells , Humans , Immunization, Passive , Male , Mutation , Neutralization Tests , Protein Domains , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...