Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Org Biomol Chem ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38919997

ABSTRACT

Brønsted acid catalyzed regioselective ring opening of aziridines by phenols and thiophenols have been reported. Involvement of a series of aziridines with a range of phenols and thiophenols offer the generality of the reported protocol. Completion of the reaction at room temperature within very short time brings the uniqueness of the developed technique. To emphasis on the application of the developed methodology, the products have been used for the further synthesis of a range of useful and novel heterocyclic molecules such as indolines, indoles, benzothiazines, dihydrobenzothiazines, benzo-oxazines and benzochromenes.

2.
Org Biomol Chem ; 22(23): 4697-4703, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38775270

ABSTRACT

A catalytic and versatile synthetic method for the synthesis of imidazo[1,2-a]pyridines has been developed. Brønsted acid-catalysis plays a major role in the regioselective ring opening of 2H-azirines. Nucleophilic attack via the N-centre of mercaptopyridines and their analogues, followed by cyclisation by cleaving the C-S bond, allowed a library of imidazo[1,2-a]pyridines and related heterocycles to be built. The reaction protocol has been applied to various 2H-azirines, 2-mercaptopyridines, and thiazole-2-thiols, illustrating the generality of reaction conditions. The practical applications include the synthesis of pharmaceuticals, such as anti-tumor agents. This study introduces a novel approach to the synthesis of functional molecules with extensive potential.

3.
ACS Omega ; 8(49): 46614-46627, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107960

ABSTRACT

The catalytic activity of methyltrifluoromethanesulfonate (MeOTf) has been explored toward direct nucleophilic substitution of the hydroxyl group of nonmanipulated alcohols such as benzylic, allylic, propargylic, and tertiary alcohols with a wide range of uncharged nucleophiles such as 1,3-dicarbonyl compounds, amides, alkynes, and indoles to generate functionalized 1,3-dicarbonyl compounds, amides, alkynes, and indoles, respectively. Thus, the present protocol defines an alternate pathway to construct new C-C, C-N, and C-O bonds with the formation of water as the byproduct under mild conditions without any acids or metals. A completely different mechanism was established through several control experiments to explain the reaction methodology. As an application of the reported protocol, 1H-indene derivatives have been synthesized in one pot when benzylic alcohols were subjected to react with internal alkynes. The scope of the reaction has been further extended toward a tandem benzylation-cyclization-dehydration of 1,3-dicarbonyl compounds with 2-hydroxybenzyl alcohols, which furnish biologically important 4H-chromene derivatives.

4.
J Org Chem ; 88(22): 15580-15588, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37933871

ABSTRACT

Benzofuran and naphthofuran derivatives are synthesized from readily available phenols and naphthols. Regioselective ring openings of 2H-azirine followed by in situ aromatization using a catalytic amount of Brønsted acid have established the novelty of the methodology. The involvement of a series of 2H-azirines with a variety of phenols, 1-naphthols, and 2-naphthols showed the generality of the protocol. In-depth density functional theory calculations revealed the reaction mechanism with the energies of the intermediates and transition states of a model reaction. An alternate pathway of the mechanism has also been proposed with computer modeling.

5.
Water Sci Technol ; 86(11): 2808-2819, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36515190

ABSTRACT

Rubber processing generates a large volume of wastewater containing rubber latex residues and chemicals. Remediation of the wastewater needs a cost-effective and environment-friendly treatment method. For this study, Moringa oleifera stem bark and Pseudomonas sp. bacteria were used for adsorption and microbial treatment of the effluent. The adsorbent surface was mostly amorphous with crystallinity index 37.9% and the BET surface area was 6.622 m2/g. FTIR analysis indicated involvement of O-H stretching, ketone α, ß-unsaturated, C-H stretching, carboxylic acid and derivatives O-C stretching functional groups in the adsorption process. The assessment of the above two agents was based on their reduction capabilities of the toxic parameters, such as total suspended and dissolved solids, total solids, biological and chemical oxygen demand, sulphate, ammonium, dissolved oxygen, phosphate, pH, electrical conductivity, turbidity, and oxidation reduction potential from the wastewater. A comparative study of the present work revealed that both the agents were effective in reduction of most of the above parameters below the safe discharge limits. However, the adsorption using Moringa oleifera stem bark was better compared to the biodegradation by Pseudomonas sp. bacteria. The main challenges that typically accompany biodegradation include microbe handling and a lower removal percentage than adsorption.


Subject(s)
Moringa oleifera , Wastewater , Moringa oleifera/chemistry , Rubber , Plant Bark , Pseudomonas , Adsorption
6.
Org Biomol Chem ; 20(43): 8400-8404, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36254587

ABSTRACT

A reaction between 2-alkoxynaphthalene and an in situ formed azaoxyallyl cation has been reported under ambient reaction conditions. The (3 + 2) cycloaddition reaction followed by aryl C-OMe/C-OEt bond cleavage produces a variety of benzo[e]indolone derivatives. Based on the isolated intermediate from the control experiment and previous results, a possible mechanism has been drawn. Reduction of the N-O bond of the benzo[e]indolone derivative manifests the possibility of further functionalization of the products towards biologically important heterocyclic molecules.


Subject(s)
Cycloaddition Reaction , Cations
7.
J Mol Model ; 27(8): 222, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34236527

ABSTRACT

The crescent evolution of a global pandemic COVID-19 and its respiratory syndrome (SARS-Cov-2) has been a constant concern (Ghosh 2021; Khan et al. 2021; Alazmi and Motwalli 2020; Vargas et al. 2020). The absence of a proven and effective medication has compelled all the scientific community to search for a new drug. The use of known drugs is a faster way to develop new therapies. Molecular docking is a powerful tool (Gao et al. J Mol Model 10: 44-54, 2004; Singh et al. J Mol Model 18: 39-51, 2012; Schulz-Gasch and Stahl J Mol Model 9:47-57, 2003) to study the interaction of potential drugs with SARS-CoV-2, Alsalme et al. (2020) and Sanders et al. (2020) spike protein as a consequence the main goal of this article is to present the result of the study of an interaction between (R and S)-Linezolid with receptor-binding domain (RBD) of SARS-Cov-2 spike protein complexed with human Angiostensin-converting enzyme 2 (ACE2) (6vW1 - from PDB). The Linezolid enantiomers were optimized at B3LYP/6-311++G(2d,p) level of theory. Molecular docking of the system (S)-Linezolid⋯RBD⋯ACE2 and (R)-Linezolid⋯RBD⋯ACE2 was performed, the analysis was made using LigPlot+ and NCIplot software packages, to understand the intermolecular interactions. The UV-Vis and ECD of the complexes - (R and S)-Linezolid⋯RBD⋯ACE2 were performed in two layers with DFT/6-311++G(3df,2p) and DFT/6-31G(d), respectively. The results showed that only the (S)-Linezolid had a stable interaction with - 8.05 kcal.mol- 1, whereas all the R-enantiomeric configurations had positive values of binding energy. The (S)-Linezolid had the same interactions as in the (S)-Linezolid ⋯ Haluarcula morismortui Ribosomal system, where it is well-known the fact that the latter has biological activity. A specific interaction on the fluorine ring justified an attenuation on the ECD signal, in comparison to isolated species. Therefore, some biological activity of (S)-Linezolid with SARS-CoV-2 RBD was expected, indicated by the modification of its ECD signal and justified by a similar interaction in the S-Linezolid⋯Haluarcula marismortui Ribosomal system.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Linezolid/pharmacology , Molecular Docking Simulation , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/metabolism , Binding Sites , COVID-19/virology , Host-Pathogen Interactions , Humans , Kinetics , Linezolid/metabolism , Protein Binding , Protein Conformation , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
8.
Nat Commun ; 10(1): 3826, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31444355

ABSTRACT

Optically pure alcohols are abundant in nature and attractive as feedstock for organic synthesis but challenging for further transformation using atom efficient and sustainable methodologies, particularly when there is a desire to conserve the chirality. Usually, substitution of the OH group of stereogenic alcohols with conservation of chirality requires derivatization as part of a complex, stoichiometric procedure. We herein demonstrate that a simple, inexpensive, and environmentally benign iron(III) catalyst promotes the direct intramolecular substitution of enantiomerically enriched secondary and tertiary alcohols with O-, N-, and S-centered nucleophiles to generate valuable 5-membered, 6-membered and aryl-fused 6-membered heterocyclic compounds with chirality transfer and water as the only byproduct. The power of the methodology is demonstrated in the total synthesis of (+)-lentiginosine from D-glucose where iron-catalysis is used in a key step. Adoption of this methodology will contribute towards the transition to sustainable and bio-based processes in the pharmaceutical and agrochemical industries.

9.
J Org Chem ; 82(7): 3403-3410, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28244740

ABSTRACT

A metal and solvent free strategy to functionalize aryl methyl ethers through direct nucleophilic substitution of aryl C-OMe bond has been described. A wide range of O, S, N, and C-centered uncharged nucleophiles has been successfully employed. Using this protocol, functional derivatives of bisthiophene have been synthesized in a straightforward way. The reactions are highly atom-efficient and generate methanol as the only byproduct.

10.
J Org Chem ; 81(6): 2355-63, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26835717

ABSTRACT

The hydroxyl groups of naphthol and tautomerizable phenol derivatives have been substituted by O-, S-, N-, and C-centered nucleophiles under solvent-free reaction conditions. The products are generated in good to excellent yields. para-Toluenesulfonic acid exhibits the best catalytic activity compared to other Brønsted acids. Experimental observations suggest that the reaction proceeds through the intermediacy of the keto tautomer of naphthol. Nucleophilic addition to the carbonyl group followed by elimination of water generates the desired product. The present methodology provides access to substituted naphtho[2,1-b]furan derivatives. The products generated using N-centered nucleophiles can be further transformed to important classes of organic molecules such as benzocarbazole and imidazole derivatives.

11.
J Am Chem Soc ; 137(14): 4646-9, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25803790

ABSTRACT

The hydroxyl group of enantioenriched benzyl, propargyl, allyl, and alkyl alcohols has been intramolecularly displaced by uncharged O-, N-, and S-centered nucleophiles to yield enantioenriched tetrahydrofuran, pyrrolidine, and tetrahydrothiophene derivatives with phosphinic acid catalysis. The five-membered heterocyclic products are generated in good to excellent yields, with high degree of chirality transfer, and water as the only side-product. Racemization experiments show that phosphinic acid does not promote SN1 reactivity. Density functional theory calculations corroborate a reaction pathway where the phosphinic acid operates as a bifunctional catalyst in the intramolecular substitution reaction. In this mechanism, the acidic proton of the phosphinic acid protonates the hydroxyl group, enhancing the leaving group ability. Simultaneously, the oxo group of phosphinic acid operates as a base abstracting the nucleophilic proton and thus enhancing the nucleophilicity. This reaction will open up new atom efficient techniques that enable alcohols to be used as nucleofuges in substitution reactions in the future.

12.
Org Lett ; 16(21): 5556-9, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25325145

ABSTRACT

An atom-efficient synthesis of keto thioethers was devised via tandem gold/palladium catalysis. The reaction proceeds through a regioselective thiol attack at the ß-position of the alcohol, followed by an alkyl, aryl, or benzyl 1,2-shift. Both acyclic and cyclic systems were studied, in the latter case leading to the ring expansion of cyclic substrates.


Subject(s)
Benzyl Compounds/chemistry , Gold/chemistry , Palladium/chemistry , Sulfides/chemical synthesis , Catalysis , Cyclization , Molecular Structure , Sulfides/chemistry
13.
Chemistry ; 20(8): 2159-63, 2014 Feb 17.
Article in English | MEDLINE | ID: mdl-24478141

ABSTRACT

An efficient and highly atom-economical tandem Pd/Au-catalyzed route to α-sulfenylated carbonyl compounds from terminal propargylic alcohols and thiols has been developed. This one-step procedure has a wide substrate scope with respect to substituents at the α-position of the alcohol. Both aromatic and aliphatic thiols generated the α-sulfenylated carbonyl products in good to excellent yields. A mechanism is proposed in which the reaction proceeds through a Pd-catalyzed regioselective hydrothiolation at the terminal triple bond of the propargyl alcohol followed by an Au-catalyzed 1,2-hydride migration.

14.
Chemistry ; 19(52): 17939-50, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24272980

ABSTRACT

Gold(I)-chloride-catalyzed synthesis of α-sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols showed a wide substrate scope with respect to both propargylic alcohols and aryl thiols. Primary and secondary aromatic propargylic alcohols generated α-sulfenylated aldehydes and ketones in 60-97% yield. Secondary aliphatic propargylic alcohols generated α-sulfenylated ketones in yields of 47-71%. Different gold sources and ligand effects were studied, and it was shown that gold(I) chloride gave the highest product yields. Experimental and theoretical studies demonstrated that the reaction proceeds in two separate steps. A sulfenylated allylic alcohol, generated by initial regioselective attack of the aryl thiol on the triple bond of the propargylic alcohol, was isolated, evaluated, and found to be an intermediate in the reaction. Deuterium labeling experiments showed that the protons from the propargylic alcohol and aryl thiol were transferred to the 3-position, and that the hydride from the alcohol was transferred to the 2-position of the product. Density functional theory (DFT) calculations showed that the observed regioselectivity of the aryl thiol attack towards the 2-position of propargylic alcohol was determined by a low-energy, five-membered cyclic protodeauration transition state instead of the strained, four-membered cyclic transition state found for attack at the 3-position. Experimental data and DFT calculations supported that the second step of the reaction is initiated by protonation of the double bond of the sulfenylated allylic alcohol with a proton donor coordinated to gold(I) chloride. This in turn allows for a 1,2-hydride shift, generating the final product of the reaction.

15.
Chem Asian J ; 8(5): 974-81, 2013 May.
Article in English | MEDLINE | ID: mdl-23471850

ABSTRACT

In this study, we investigate the effect of the electrophiles and the nucleophiles for eight catalysts in the catalytic SN 1 type substitution of alcohols with different degree of activation by sulfur-, carbon-, oxygen-, and nitrogen-centered nucleophiles. The catalysts do not show any general variance in efficiency or selectivity with respect to the alcohols and follow the trend of alcohol reactivity. However, when it comes to the nucleophile, the eight catalysts show general and specific variances in the efficiency and selectivity to perform the desired substitution. Interestingly, the selectivity of the alcohols to produce the desired substitution products was found to be independent of the electrophilicity of the generated carbocations but highly dependent on the ease of formation of the cation. Catalysts based on iron(III), bismuth(III), and gold(III) show higher conversions for S-, C-, and N-centered nucleophiles, and Bi(III) was the most efficient catalyst in all combinations. Catalysts based on rhenium(I) or rhenium(VII), palladium(II), and lanthanum(III) were the most efficient in performing the nucleophilic substitution on the various alcohols with the O-centered nucleophiles. These catalysts generate the symmetrical ether as a by-product from the reactions of S-, C-, and N-centered nucleophiles as well, resulting in lower chemoselectivity.


Subject(s)
Alcohols/chemistry , Metals/chemistry , Organometallic Compounds/chemistry , Catalysis , Molecular Structure , Stereoisomerism
16.
Chem Commun (Camb) ; 48(52): 6586-8, 2012 Jul 04.
Article in English | MEDLINE | ID: mdl-22622449

ABSTRACT

A one-step atom efficient gold(I)-catalyzed route to α-sulfenylated ketones and aldehydes from propargylic alcohols and aryl thiols is described.


Subject(s)
Alkynes/chemistry , Gold/chemistry , Propanols/chemistry , Sulfhydryl Compounds/chemistry , Catalysis , Ketones/chemistry
17.
J Org Chem ; 76(9): 3539-44, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21413813

ABSTRACT

An iron-catalyzed intramolecular alkyne-aldehyde metathesis strategy of the alkynyl ether of salicylaldehyde derivatives has been developed which works under mild reaction conditions to produce the functionalized 2H-chromene derivatives. This protocol is compatible toward a wide range of functional groups, such as methoxy, fluoro, chloro, bromo, and phenyl groups. This method provides an atom-economical and environmentally friendly approach for the synthesis of a series of substituted 2H-chromenes.


Subject(s)
Aldehydes/chemistry , Alkynes/chemistry , Benzopyrans/chemistry , Benzopyrans/chemical synthesis , Green Chemistry Technology/methods , Iron/chemistry , Catalysis
18.
J Org Chem ; 75(5): 1674-83, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20131775

ABSTRACT

A simple, convenient, and multicomponent coupling strategy for the synthesis of highly functionalized pyrroles catalyzed by iron(III) salts has been developed. This strategy demonstrated four-component coupling reactions of 1,3-dicarbonyl compounds, amines, aromatic aldehydes, and nitroalkanes without an inert atmosphere. This methodology provides an alternative approach for easy access of highly substituted pyrroles in moderate to very good yields using four simple and readily available building blocks via one-pot tandem reaction. Notably, this method is very cheap, straightforward, and environmentally friendly compared to the existing methods.


Subject(s)
Aldehydes/chemistry , Alkanes/chemistry , Amines/chemistry , Cross-Linking Reagents/chemistry , Iron/chemistry , Pyrroles/chemical synthesis , Catalysis , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Structure , Nitro Compounds , Pyrroles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...