Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122610, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36921516

ABSTRACT

Among the different analytical techniques, surface-enhanced Raman scattering (SERS) approach is a widely used technique for the detection and analysis of various chemicals and biological samples. Present study reports a low-cost, sensitive SERS substrate that has an ability to detect rotavirus in clinical stool samples. The proposed SERS substrate has been fabricated through drop-casting of silver nanoparticles (AgNPs) on a printing-grade paper. Rotavirus particles were extracted from clinical stool samples. The presence of rotavirus antigen in stool samples was confirmed using enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and sequencing. The characteristic Raman peaks of rotavirus (RV) particles in solution were found to be significantly enhanced when Raman signals were recorded from the paper-based SERS substrates. Using the proposed SERS substrate, rotavirus samples with concentration as low as 1% could be reliably recorded by the Raman spectrometer. The paper SERS substrate reported herein is an extremely cost-efficient platform and may find applications in other research and clinical laboratories as well.


Subject(s)
Metal Nanoparticles , Rotavirus , Silver , Spectrum Analysis, Raman/methods
2.
Mikrochim Acta ; 190(2): 64, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36690871

ABSTRACT

The fabrication of SERS substrate by gold nanoparticle-decorated polyvinyl alcohol electrospun nanofibers which has been used to detect trace sensing of two widely used poultry antibiotics doxycycline hydrochloride and enrofloxacin is demonstrated. The performance of the backscattered Raman signals from the proposed SERS substrate has been initially evaluated with two standard Raman active compounds namely malachite green and rhodamine-6G. The limit of detection of the proposed substrate is estimated to be 7.32 nM. Following this, the usability of the proposed SERS substrate has been demonstrated through the detection of the aforementioned antibiotics in chicken meat samples. The presence of antibiotics in chicken meat sample has been validated with the standard analytical tool of liquid chromatography-mass spectrometry and the results were compared with the proposed sensing technique. Further, principal component analysis has been performed to classify the antibiotics that are present in the field-collected meat samples.


Subject(s)
Metal Nanoparticles , Nanofibers , Animals , Metal Nanoparticles/chemistry , Gold/chemistry , Chickens , Anti-Bacterial Agents , Nanofibers/chemistry , Spectrum Analysis, Raman/methods , Meat
3.
J Biophotonics ; 15(11): e202200138, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36054627

ABSTRACT

Detection and estimation of various biomolecular samples are often required in research and clinical laboratory applications. Present work demonstrates the functioning of a surface-enhanced Raman scattering (SERS) substrate that has been obtained by drop-casting of citrate-reduced gold nanoparticles (AuNPs) of average dimension of 23 nm on a bare blu-ray digital versatile disc (BR-DVD) substrate. The performance of the proposed SERS substrate has been initially evaluated with standard Raman active samples, namely malachite green (MG) and 1,2-bis(4-pyridyl)ethylene (BPE). The designed SERS substrate yields an average enhancement factor of 3.2 × 106 while maintaining reproducibility characteristics as good as 94% over the sensing region of the substrate. The usability of the designed SERS substrate has been demonstrated through the detection and analysis of purified rotavirus double-stranded RNA (dsRNA) samples in the laboratory environment condition. Rotavirus RNA concentrations as low as 10 ng/µL could be detected with the proposed sensing scheme.


Subject(s)
Metal Nanoparticles , Rotavirus , Gold/chemistry , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Reproducibility of Results , RNA
4.
Langmuir ; 38(24): 7628-7638, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35666639

ABSTRACT

Adsorption-mediated water treatment leaves adsorbents as secondary pollutants in the environment. However, photocatalysis aids in decomposing the contaminant into its nontoxic forms. In this context, we demonstrate an adsorption-photocatalysis pairing in Au-CeO2 nanocomposites for a total methylene blue (MB) removal from water. We synthesized Au-CeO2 through the citrate (cit) reduction method at different Au loading and studied its adsorption capacity with kinetics and thermodynamic models. We observe that the high adsorption capacity of Au-CeO2 is primarily because of the presence of Ce3+ states in CeO2 and citrate ligands on Au NPs. The Ce3+ states interact and transfer their electrons to supported Au NPs, rendering a negative charge over Au. The negatively charged Au surface and the carboxyl (-COO-) group of citrate ligands mediate an electrostatic interaction/adsorption of cationic MB. The total removal of MB is expedited under white light and lasers. A control experiment with Au NPs shows less adsorption-photocatalysis. The size of Au NPs and Au-CeO2 interfacial interaction is responsible for the surface plasmon resonance spectral position at 550-600 nm. Linear sweep voltammetry (LSV) and plasmonic field simulation show surface plasmon-driven photocatalysis in Au-CeO2. LSV shows a 3-fold higher photocurrent density in Au-CeO2 than colloidal Au NPs under white light. The simulated electric field intensity in Au-CeO2 is maximum at SPR excitation and the closest interfacial separation (d = 0 nm). The plasmon-driven photocatalysis in colloidal Au NPs is mainly due to the interaction of hot electrons with the adsorbed MB molecule. Notably, near-field light concentration, hot electrons, and interfacial charge separation are responsible for excellent MB removal in the Au-CeO2 nanosystem. The total MB removal through adsorption-photocatalysis pairing is 99.3% (Au-CeO2), 30.7% (Au NPs), and 13% (CeO2).

5.
Analyst ; 147(12): 2859-2869, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35638294

ABSTRACT

Microscopes, bright-field (BF) and fluorescence microscopes, in particular, are ubiquitous for clinical diagnostics, cellular and microbiological investigations and in research laboratories. However, the size, cost, fragility and need for skilled personnel to operate these tools restrict their use in resource-limited settings. As an alternative platform, herein, we report a flexible multimodal imaging system that operates in BF and fluorescence modes using a smartphone. Our device utilizes the inbuilt primary camera of phones, and with the aid of easily available optical components, the designed platform is transformed into a high-throughput microscopic device that performs on par with that of a laboratory-grade microscope. The designed platform operates at three different optical magnifications and yields a lateral resolution of 1.21 µm over an acceptable field-of-view (FoV) of diameter ∼4530 µm. The versatility of the device has been demonstrated through imaging of standard microbeads and human blood samples both in BF and fluorescence modes of imaging. Furthermore, the designed imaging platform is equipped with an on-board cell recognition feature which has been obtained through developing a smartphone application for automatic cell counting with high precision.


Subject(s)
Smartphone , Humans , Microscopy, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...