Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 875320, 2022.
Article in English | MEDLINE | ID: mdl-35615349

ABSTRACT

MALT1 forms part of a central signaling node downstream of immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors, across a broad range of immune cell subsets, and regulates NF-κB driven transcriptional responses via dual scaffolding-protease activity. Allosteric inhibition of MALT1 activity has demonstrated benefit in animal models of inflammation. However, development of MALT1 inhibitors to treat autoimmune and inflammatory diseases (A&ID) has been hindered by reports linking MALT1 inhibition and genetic loss-of-function to reductions in regulatory T-cell (Treg) numbers and development of auto-inflammatory syndromes. Using an allosteric MALT1 inhibitor, we investigated the consequence of pharmacological inhibition of MALT1 on proinflammatory cells compared to regulatory T-cells. Consistent with its known role in ITAM-driven responses, MALT1 inhibition suppressed proinflammatory cytokine production from activated human T-cells and monocyte-derived macrophages, and attenuated B-cell proliferation. Oral administration of a MALT1 inhibitor reduced disease severity and synovial cytokine production in a rat collagen-induced arthritis model. Interestingly, reduction in splenic Treg numbers was less pronounced in the context of inflammation compared with naïve animals. Additionally, in the context of the disease model, we observed an uncoupling of anti-inflammatory effects of MALT1 inhibition from Treg reduction, with lower systemic concentrations of inhibitor needed to reduce disease severity compared to that required to reduce Treg numbers. MALT1 inhibition did not affect suppressive function of human Tregs in vitro. These data indicate that anti-inflammatory efficacy can be achieved with MALT1 inhibition without impacting the number or function of Tregs, further supporting the potential of MALT1 inhibition in the treatment of autoimmune disease.


Subject(s)
Autoimmune Diseases , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , T-Lymphocytes, Regulatory , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/pathology , Cytokines/genetics , Inflammation , Lymphocyte Activation , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , NF-kappa B , Rats , T-Lymphocytes, Regulatory/drug effects
2.
J Immunol Methods ; 440: 74-82, 2017 01.
Article in English | MEDLINE | ID: mdl-27840065

ABSTRACT

Luminex® technology provides a powerful methodology for multiplex cytokine detection but remains constrained by high costs and a minimum of 25-50µL sample volume requirement per assay-well often hindering analysis of limited biological samples. Here we compare the results of Luminex-based cytokine multiplexing assay performed using conventional 96-well microtiter plates and a particular 96-well wall-less plate based on Droparray® technology ("DA-Bead"). The application of the DA-Bead plate allows 80% reduction of sample and reagent volume, thus an opportunity for significant cost savings in Luminex reagents with no change to the workflow. To compare the DA-Bead method to the conventional method, two different types of samples were tested with two different commercially available Luminex kits and the results for each method were compared. The first type was splenocyte culture supernatants from murine spleens which were harvested from mice immunized with Ascaris suum protein As24 and followed by cell stimulation ex vivo at various time points with this same antigen. Cytokine levels in these supernatants were evaluated using a Bio-Plex® TH1/TH2 8-plex kit. The second sample type was plasma from mice from an experimental autoimmune encephalomyelitis (EAE) study, and these samples were evaluated using a Milliplex® TH17 25-plex kit. The data showed that the DA-Bead method for analysis was comparable to, if not superior to, the conventional method in terms of consistency/precision, accuracy, sensitivity and dynamic range and these results are not specific to sample type, reagents, or commercial vendor.


Subject(s)
Antigens, Helminth/immunology , Ascaris suum/immunology , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Enzyme-Linked Immunosorbent Assay/instrumentation , Helminth Proteins/immunology , Spleen/immunology , Animals , Antigens, Helminth/administration & dosage , Biomarkers/metabolism , Cells, Cultured , Culture Media, Conditioned/metabolism , Cytokines/blood , Encephalomyelitis, Autoimmune, Experimental/blood , Enzyme-Linked Immunosorbent Assay/methods , Equipment Design , Female , Helminth Proteins/administration & dosage , Immunization , Mice, Inbred BALB C , Reproducibility of Results , Spleen/metabolism , Time Factors , Workflow
3.
MAbs ; 8(4): 787-98, 2016.
Article in English | MEDLINE | ID: mdl-26963739

ABSTRACT

In 10-20% of the cases of chronic lymphocytic leukemia of B-cell phenotype (B-CLL), the IGHV1-69 germline is utilized as VH gene of the B cell receptor (BCR). Mouse G6 (MuG6) is an anti-idiotypic monoclonal antibody discovered in a screen against rheumatoid factors (RFs) that binds with high affinity to an idiotope expressed on the 51p1 alleles of IGHV1-69 germline gene encoded antibodies (G6-id(+)). The finding that unmutated IGHV1-69 encoded BCRs are frequently expressed on B-CLL cells provides an opportunity for anti-idiotype monoclonal antibody immunotherapy. In this study, we first showed that MuG6 can deplete B cells encoding IGHV1-69 BCRs using a novel humanized GTL mouse model. Next, we humanized MuG6 and demonstrated that the humanized antibodies (HuG6s), especially HuG6.3, displayed ∼2-fold higher binding affinity for G6-id(+) antibody compared to the parental MuG6. Additional studies showed that HuG6.3 was able to kill G6-id(+) BCR expressing cells and patient B-CLL cells through antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Finally, both MuG6 and HuG6.3 mediate in vivo depletion of B-CLL cells in NSG mice. These data suggest that HuG6.3 may provide a new precision medicine to selectively kill IGHV1-69-encoding G6-id(+) B-CLL cells.


Subject(s)
Antibodies, Anti-Idiotypic/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Receptors, Antigen, B-Cell/immunology , Animals , Antibodies, Anti-Idiotypic/biosynthesis , Antibodies, Monoclonal, Humanized/biosynthesis , Humans , Mice
4.
Blood ; 125(25): 3886-95, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-25833964

ABSTRACT

Mice reconstituted with a human immune system provide a tractable in vivo model to assess human immune cell function. To date, reconstitution of murine strains with human hematopoietic stem cells (HSCs) from patients with monogenic immune disorders have not been reported. One obstacle precluding the development of immune-disease specific "humanized" mice is that optimal adaptive immune responses in current strains have required implantation of autologous human thymic tissue. To address this issue, we developed a mouse strain that lacks murine major histocompatibility complex class II (MHC II) and instead expresses human leukocyte antigen DR1 (HLA-DR1). These mice displayed improved adaptive immune responses when reconstituted with human HSCs including enhanced T-cell reconstitution, delayed-type hypersensitivity responses, and class-switch recombination. Following immune reconstitution of this novel strain with HSCs from a patient with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, associated with aberrant FOXP3 function, mice developed a lethal inflammatory disorder with multiorgan involvement and autoantibody production mimicking the pathology seen in affected humans. This humanized mouse model permits in vivo evaluation of immune responses associated with genetically altered HSCs, including primary immunodeficiencies, and should facilitate the study of human immune pathobiology and the development of targeted therapeutics.


Subject(s)
Autoimmunity/immunology , Disease Models, Animal , Forkhead Transcription Factors/immunology , Immunologic Deficiency Syndromes/immunology , Animals , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/genetics , Hematopoietic Stem Cell Transplantation , Humans , Immunohistochemistry , Immunophenotyping , Mice , Mice, Knockout , Reverse Transcriptase Polymerase Chain Reaction , Transplantation, Heterologous
5.
Immunology ; 134(4): 419-33, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22044090

ABSTRACT

BLT mice, constructed by surgical implantation of human fetal thymus-liver tissues and intravenous delivery of autologous CD34+ haematopoietic stem cells into adult non-obese diabetic/severe combined immunodeficiency mice, were evaluated for vaccine-induced humoral immune responses. Following engraftment, these mice developed a human lymphoid system; however, the majority of the peripheral human B lymphocytes displayed an immature phenotype as evidenced by surface CD10 expression. Over 50% of the human B cells in the periphery but not in the bone marrow also expressed the CD5 antigen, which is found only infrequently on mature follicular B cells in humans. A single intramuscular immunization with recombinant viral envelope antigens, e.g., HIVgp140 and West Nile Virus envelope proteins, together with the immune stimulatory KLK/ODN1a composition) [corrected] adjuvant resulted in seroconversion characterized by antigen-specific human antibodies predominantly of the IgM isotype. However, repeated booster immunizations did not induce secondary immune responses as evidenced by the lack of class switching and specific IgM levels remaining relatively unchanged. Interestingly, the peripheral CD19+ CD5+ but not the CD19+ CD5- human B lymphocytes displayed a late developing CD27+ IgM+ memory phenotype, suggesting that the CD5+ B-cell subset, previously implicated in 'natural antibody' production, may play a role in the vaccine-induced antibody response. Furthermore, human T lymphocytes from these mice demonstrated suboptimal proliferative responses and loss of co-stimulatory surface proteins ex vivo that could be partially reversed with human interleukin-2 and interleukin-7. Therefore, vaccine-induced immune responses in BLT mice resemble a T-cell-independent pathway that can potentially be modulated in vivo by the exogenous delivery of human cytokines/growth factors.


Subject(s)
B-Lymphocytes/immunology , Immunity, Humoral , Animals , Antigens, Viral/immunology , CD5 Antigens/immunology , Cell Differentiation/immunology , Chimera , Fetal Tissue Transplantation , Gene Products, env/immunology , HIV-1/immunology , Humans , Immunization , Liver/embryology , Liver/immunology , Liver Transplantation , Mice , Mice, SCID , Recombinant Proteins/immunology , Species Specificity , Thymus Gland/embryology , Thymus Gland/immunology , Thymus Gland/transplantation , Vaccines/immunology , West Nile virus/immunology
6.
Biochem Biophys Res Commun ; 349(1): 153-61, 2006 Oct 13.
Article in English | MEDLINE | ID: mdl-16935263

ABSTRACT

Prion diseases are fatal neurodegenerative disorders characterized by the accumulation of an abnormal isoform (PrPSc) of the normal cellular prion protein (PrPC) in the brain. Reportedly, abnormal N-linked glycosylation patterns in PrPC are associated with disease susceptibility; thus, we compared the glycosylation status of normal and several mutant forms of the murine prion protein (MuPrP) in cultured mammalian cells. Substitution of the N-terminal signal sequence of normal MuPrP with a heterologous signal peptide did not alter glycosylation. When expressed without the C-terminal glycophosphatidylinositol anchor signal, the majority of MuPrP remained intracellular and unglycosylated, and a 46 kDa species (p46) of the unglycosylated PrPC was detected on reducing gels. p46 was also observed when wild-type MuPrP was expressed in the presence of tunicamycin or enzymatically deglycosylated in vitro. A rabbit polyclonal anti-serum raised against dimeric MuPrP cross-reacted with p46 and localized the signal within the Golgi apparatus. We propose that the 46 kDa signal is a dimeric form of MuPrP and in the light of recent studies, it can be argued that a relatively stable, non-glycosylated, cytoplasmic PrPC dimer, produced as a result of compromised glycosylation is an intermediate in initiating conversion of PrPC to PrPSc in sporadic transmissible spongiform encephalopathies.


Subject(s)
Prions/biosynthesis , Animals , Brain/metabolism , Cells, Cultured , Cytoplasm/metabolism , Dimerization , Genetic Predisposition to Disease , Glycosylation , Golgi Apparatus/metabolism , Humans , Mice , Prion Diseases/metabolism , Prions/chemistry , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...