Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Adv Mater ; 33(28): e2002264, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32902018

ABSTRACT

How do trees support their upright massive bodies? The support comes from the incredibly strong and stiff, and highly crystalline nanoscale fibrils of extended cellulose chains, called cellulose nanofibers. Cellulose nanofibers and their crystalline parts-cellulose nanocrystals, collectively nanocelluloses, are therefore the recent hot materials to incorporate in man-made sustainable, environmentally sound, and mechanically strong materials. Nanocelluloses are generally obtained through a top-down process, during or after which the original surface chemistry and interface interactions can be dramatically changed. Therefore, surface and interface engineering are extremely important when nanocellulosic materials with a bottom-up process are fabricated. Herein, the main focus is on promising chemical modification and nonmodification approaches, aiming to prospect this hot topic from novel aspects, including nanocellulose-, chemistry-, and process-oriented surface and interface engineering for advanced nanocellulosic materials. The reinforcement of nanocelluloses in some functional materials, such as structural materials, films, filaments, aerogels, and foams, is discussed, relating to tailored surface and/or interface engineering. Although some of the nanocellulosic products have already reached the industrial arena, it is hoped that more and more nanocellulose-based products will become available in everyday life in the next few years.


Subject(s)
Cellulose , Engineering , Nanofibers
2.
Nanomaterials (Basel) ; 10(1)2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31935929

ABSTRACT

Recently, with the development of personal wearable electronic devices, the demand for portable power is miniaturization and flexibility. Electro-conductive hydrogels (ECHs) are considered to have great application prospects in portable energy-storage devices. However, the synergistic properties of self-healability, viscoelasticity, and ideal electrochemistry are key problems. Herein, a novel ECH was synthesized by combining polyvinyl alcohol-borax (PVA) hydrogel matrix and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-cellulose nanofibers (TOCNFs), carbon nanotubes (CNTs), and polyaniline (PANI). Among them, CNTs provided excellent electrical conductivity; TOCNFs acted as a dispersant to help CNTs form a stable suspension; PANI enhanced electrochemical performance by forming a "core-shell" structural composite. The freeze-standing composite hydrogel with a hierarchical 3D-network structure possessed the compression stress (~152 kPa) and storage modulus (~18.2 kPa). The composite hydrogel also possessed low density (~1.2 g cm-3), high water-content (~95%), excellent flexibility, self-healing capability, electrical conductivity (15.3 S m-1), and specific capacitance of 226.8 F g-1 at 0.4 A g-1. The fabricated solid-state all-in-one supercapacitor device remained capacitance retention (~90%) after 10 cutting/healing cycles and capacitance retention (~85%) after 1000 bending cycles. The novel ECH had potential applications in advanced personalized wearable electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...