Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Conserv Physiol ; 11(1): coad039, 2023.
Article in English | MEDLINE | ID: mdl-38026804

ABSTRACT

Apex predators have critical roles in maintaining the structure of ecosystem functioning by controlling intraguild subordinate populations. Such dominant-subordinate interactions involve agonistic interactions including direct or indirect impacts on the subordinates. As these indirect effects are often mediated through physiological processes, it is important to quantify such responses to better understand population parameters. We used a large carnivore intraguild system involving tiger (Panthera tigris) and leopard (Panthera pardus) to understand the dietary and physiological responses under a spatio-temporal gradient of tiger competition pressures in Rajaji Tiger Reserve (RTR) between 2015 and 2020. We conducted systematic faecal sampling in the winters of 2015 and 2020 from the park to assess diet and physiological measures. Analyses of leopard-confirmed faeces suggest a dietary-niche separation as a consequence of tiger competition. In 2020, we found an increased occurrence of large-bodied prey species without tiger competition in western-RTR. Physiological measures followed the dietary responses where leopards with large-sized prey in the diet showed higher fT3M and lower fGCM measures in western-RTR. In contrast, eastern-RTR leopards showed lower levels of fT3M and fGCM in 2020, possibly due to intense competition from tigers. Overall, these patterns strongly indicate a physiological cost of sympatry where competition with dominant tigers resulted in elevated nutritional stress. We recommend expansion of leopard monitoring and population estimation efforts to buffers, developing appropriate plans for human-leopard conflict mitigation and intensive efforts to understand leopard population dynamics patterns to ensure their persistence during the ongoing Anthropocene.

2.
Environ Monit Assess ; 195(3): 397, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36781547

ABSTRACT

Species' coexistence depends on species-specific resource utilization in a given habitat. Human disturbances in this context can constrain the realized niche by altering their community dynamics. In this study, we considered Western Himalaya as a case study to test the hypothesis that human disturbances influence mesocarnivore coexistence patterns. We regarded red fox and leopard cat as the focal species and assessed the coexistence patterns in low and high human disturbance areas in three dimensions: spatial, temporal, and dietary habit. We used camera trap detections and mitochondrial DNA-based species identification of fecal samples. We used generalized linear mixed-effect modelling (GLMM), activity overlap, Levin's niche breadth, and Pianka's overlap index to capture the spatial, temporal, and dietary interactions respectively. We found that red fox and leopard cat coexisted by spatial segregation in low human disturbance area, whereas dietary segregation was the means of coexistence in high human disturbance area. We observed a broader dietary breadth for red fox and a narrower for leopard cat in high human disturbance area. The altered coexistence pattern due to differential human disturbances indicates intensive anthropogenic activities adjacent to natural forests. It can link to increased opportunities for shared spaces between mesocarnivores and humans, leading to future disease spread and conflicts. Our study contributes to scant ecological knowledge of these mesocarnivores and adds to our understanding of community dynamics in human-altered ecosystems. The study elucidates the need for long-term monitoring of wildlife inhabiting interface areas to ensure human and wildlife coexistence.


Subject(s)
Ecosystem , Panthera , Animals , Humans , Anthropogenic Effects , Foxes , Environmental Monitoring
3.
Complex Intell Systems ; 7(2): 1079-1098, 2021.
Article in English | MEDLINE | ID: mdl-34777956

ABSTRACT

In this article, some properties of neutrosophic derivative and neutrosophic numbers have been presented. This properties have been used to develop the neutrosophic differential calculus. By considering different types of first- and second-order derivatives, different kind of systems of derivatives have been developed. This is the first time where a second-order neutrosophic boundary-value problem has been introduced with different types of first- and second-order derivatives. Some numerical examples have been examined to explain different systems of neutrosophic differential equation.

4.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34518374

ABSTRACT

Most endangered species exist today in small populations, many of which are isolated. Evolution in such populations is largely governed by genetic drift. Empirical evidence for drift affecting striking phenotypes based on substantial genetic data are rare. Approximately 37% of tigers (Panthera tigris) in the Similipal Tiger Reserve (in eastern India) are pseudomelanistic, characterized by wide, merged stripes. Camera trap data across the tiger range revealed the presence of pseudomelanistic tigers only in Similipal. We investigated the genetic basis for pseudomelanism and examined the role of drift in driving this phenotype's frequency. Whole-genome data and pedigree-based association analyses from captive tigers revealed that pseudomelanism cosegregates with a conserved and functionally important coding alteration in Transmembrane Aminopeptidase Q (Taqpep), a gene responsible for similar traits in other felid species. Noninvasive sampling of tigers revealed a high frequency of the Taqpep p.H454Y mutation in Similipal (12 individuals, allele frequency = 0.58) and absence from all other tiger populations (395 individuals). Population genetic analyses confirmed few (minimal number) tigers in Similipal, and its genetic isolation, with poor geneflow. Pairwise FST (0.33) at the mutation site was high but not an outlier. Similipal tigers had low diversity at 81 single nucleotide polymorphisms (mean heterozygosity = 0.28, SD = 0.27). Simulations were consistent with founding events and drift as possible drivers for the observed stark difference of allele frequency. Our results highlight the role of stochastic processes in the evolution of rare phenotypes. We highlight an unusual evolutionary trajectory in a small and isolated population of an endangered species.


Subject(s)
Biological Evolution , Genetic Drift , Genetic Variation , Genetics, Population , Melanosis/genetics , Phenotype , Tigers/physiology , Amino Acid Sequence , Animals , Conservation of Natural Resources , Endangered Species , Genome , Genotype , India , Microsatellite Repeats , Sequence Homology , Tigers/genetics
5.
Gen Comp Endocrinol ; 310: 113833, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34089705

ABSTRACT

Faecal glucocorticoid (GC) and triiodothyronine (T3) metabolites and their interactions are increasingly used to monitor perceived stress and nutritional challenges in free-ranging animals. However, a number of extrinsic and intrinsic factors including hormone-inert dietary materials, inorganic matters etc. are known to affect reliable hormone metabolite quantifications. In this study, the impacts of inorganic matter (IOM) on faecal GC (fGCMs) and T3 (fT3Ms) metabolite measure were addressed in wild tiger (n = 193 from Terai Arc landscape, India) and captive lion (n = 120 from Sakkarbaug Zoological Garden, Gujarat, India) and possible corrective measures were evaluated. The wild tiger samples contained highly variable IOM content (9-98%, mostly with > 40% IOM) compared to captive Asiatic lion (17-57%, majority with < 40% IOM). Significant correlations were observed between IOM content and tiger fGCM (r = -0.46, p = 0.000), fT3M (r = -0.58, p = 0.000) and lion fT3M measures (r = -0.43, p = 0.003). Two corrective measures viz. removing samples with ≥ 80% IOM and subsequently expressing concentrations as per gram of organic dry matter (instead of total dry matter) reduced IOM influence on tiger fGCM, fT3M and lion fT3M, without affecting lion fGCM measures. The corrective measures changed the interpretations of fT3M data of field-collected tiger samples with no significant changes in fGCM (both tiger and lion) and fT3M (lion) data. As faecal IOM content is common in many wild species, the results emphasize the need to reduce IOM-driven hormone data variation for ecologically relevant interpretations towards species conservation.


Subject(s)
Glucocorticoids , Tigers , Animals , Cats , Feces , India , Triiodothyronine
6.
PeerJ ; 8: e8482, 2020.
Article in English | MEDLINE | ID: mdl-32117616

ABSTRACT

BACKGROUND: Large carnivores maintain the stability and functioning of ecosystems. Currently, many carnivore species face declining population sizes due to natural and anthropogenic pressures. The leopard, Panthera pardus, is probably the most widely distributed and highly adaptable large felid globally, still persisting in most of its historic range. However, we lack subspecies-level data on country or regional scale on population trends, as ecological monitoring approaches are difficult to apply on such wide-ranging species. We used genetic data from leopards sampled across the Indian subcontinent to investigate population structure and patterns of demographic decline. METHODS: We collected faecal samples from the Terai-Arc landscape of northern India and identified 56 unique individuals using a panel of 13 microsatellite markers. We merged this data with already available 143 leopard individuals and assessed genetic structure at country scale. Subsequently, we investigated the demographic history of each identified subpopulations and compared genetic decline analyses with countrywide local extinction probabilities. RESULTS: Our genetic analyses revealed four distinct subpopulations corresponding to Western Ghats, Deccan Plateau-Semi Arid, Shivalik and Terai region of the north Indian landscape, each with high genetic variation. Coalescent simulations with microsatellite loci revealed a possibly human-induced 75-90% population decline between ∼120-200 years ago across India. Population-specific estimates of genetic decline are in concordance with ecological estimates of local extinction probabilities in these subpopulations obtained from occupancy modeling of the historic and current distribution of leopards in India. CONCLUSIONS: Our results confirm the population decline of a widely distributed, adaptable large carnivore. We re-iterate the relevance of indirect genetic methods for such species in conjunction with occupancy assessment and recommend that detailed, landscape-level ecological studies on leopard populations are critical to future conservation efforts. Our approaches and inference are relevant to other widely distributed, seemingly unaffected carnivores such as the leopard.

SELECTION OF CITATIONS
SEARCH DETAIL
...