Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Small ; : e2403899, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984756

ABSTRACT

Biosensors have emerged as vital tools for the detection and monitoring of essential biological information. However, their efficiency is often constrained by limitations in the power supply. To address this challenge, energy harvesting systems have gained prominence. These off-grid, independent systems harness energy from the surrounding environment, providing a sustainable solution for powering biosensors autonomously. This continuous power source overcomes critical constraints, ensuring uninterrupted operation and seamless data collection. In this article, a comprehensive review of recent literature on energy harvesting-based biosensors is presented. Various techniques and technologies are critically examined, including optical, mechanical, thermal, and wireless power transfer, focusing on their applications and optimization. Furthermore, the immense potential of these energy harvesting-driven biosensors is highlighted across diverse fields, such as medicine, environmental surveillance, and biosignal analysis. By exploring the integration of energy harvesting systems, this review underscores their pivotal role in advancing biosensor technology. These innovations promise improved efficiency, reduced environmental impact, and broader applicability, marking significant progress in the field of biosensors.

2.
Exploration (Beijing) ; 4(2): 20220150, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38855618

ABSTRACT

The progress of brain synaptic devices has witnessed an era of rapid and explosive growth. Because of their integrated storage, excellent plasticity and parallel computing, and system information processing abilities, various field effect transistors have been used to replicate the synapses of a human brain. Organic semiconductors are characterized by simplicity of processing, mechanical flexibility, low cost, biocompatibility, and flexibility, making them the most promising materials for implanted brain synaptic bioelectronics. Despite being used in numerous intelligent integrated circuits and implantable neural linkages with multiple terminals, organic synaptic transistors still face many obstacles that must be overcome to advance their development. A comprehensive review would be an excellent tool in this respect. Therefore, the latest advancements in implantable neural links based on organic synaptic transistors are outlined. First, the distinction between conventional and synaptic transistors are highlighted. Next, the existing implanted organic synaptic transistors and their applicability to the brain as a neural link are summarized. Finally, the potential research directions are discussed.

3.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38063687

ABSTRACT

Lead-free Cs2AgBiBr6 double perovskite has emerged as a promising new-generation photovoltaic, due to its non-toxicity, long carrier lifetime, and low exciton binding energies. However, the low power conversion efficiency, due to the high indirect bandgap (≈2 eV), is a challenge that must be overcome and acts as an obstacle to commercialization. Herein, to overcome the limitations through the light trapping strategy, we analyzed the performance evaluation via FDTD simulation when applying the moth-eye broadband antireflection (AR) layer on top of a Cs2AgBiBr6 double perovskite cell. A parabola cone structure was used as a moth-eye AR layer, and an Al2O3 (n: 1.77), MgF2 (n: 1.38), SiO2 (n: 1.46), and ZnO (n: 1.9) were selected as investigation targets. The simulation was performed assuming that the IQE was 100% and when the heights of Al2O3, MgF2, SiO2, and ZnO were 500, 350, 250, and 450 nm, which are the optimal conditions, respectively, the maximum short-circuit current density improved 41, 46, 11.7, and 15%, respectively, compared to the reference cell. This study is meaningful and innovative in analyzing how the refractive index of a moth-eye antireflection layer affects the light trapping within the cell under broadband illumination until the NIR region.

4.
RSC Adv ; 13(45): 32000-32022, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37915443

ABSTRACT

Organic photovoltaics (OPVs) have recently emerged as feasible alternatives for indoor light harvesting because of their variable optical absorption, high absorption coefficients, and low leakage currents under low lighting circumstances. Extensive research has been performed over the last decade in the quest for highly efficient, ecologically stable, and economically feasible indoor organic photovoltaics (IOPVs). This research covers a wide range of topics, including the development of new donor-acceptor materials, interlayers (such as electron and hole transport layers), energy loss reduction, open-circuit voltage enhancement via material and device engineering, and device architecture optimization. The maximum power conversion efficiency (PCE) of IOPVs has already topped 35% as a consequence of these collaborative efforts. However, further research is needed to improve numerous elements, such as manufacturing costs and device longevity. IOPVs must preserve at least 80% of their initial PCE for more than a decade in order to compete with traditional batteries used in internet of things devices. A thorough examination of this issue is urgently required. We intend to present an overview of recent developments in the evolution of IOPVs.

5.
Nanomaterials (Basel) ; 12(18)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36144940

ABSTRACT

In order to counteract the COVID-19 pandemic by wearing face masks, we examine washable fabric-based triboelectric nanogenerators (FTENGs). We applied the flash-spun nonwoven fabric (FS fabric) into the FTENGs, comparing the melt-blown nonwoven fabric (MB fabric) based FTENGs, which is conventionally studied in the field of energy harvesting. For reusability, all our proposed FTENGs are systematically investigated by controlling the washing conditions. After washing, the degradation ratio of the obtained output voltage is found to be only 12.5% for FS FTENGs, compared to the ratio of about 50% for the typical MB FTENGs. A rather small degradation ratio for FS fabric cases has resulted from less changed fabric structure after washing due to more dense fabric nature. Additionally, in order to improve the electrical characteristics of FS FTENGs. Note that the output voltage of FTENGs exhibits as much as 600 V.

6.
Polymers (Basel) ; 12(6)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545598

ABSTRACT

The Internet of things (IoT) has been rapidly growing in the past few years. IoT connects numerous devices, such as wireless sensors, actuators, and wearable devices, to optimize and monitor daily activities. Most of these devices require power in the microwatt range and operate indoors. To this end, a self-sustainable power source, such as a photovoltaic (PV) cell, which can harvest low-intensity indoor light, is appropriate. Recently, the development of highly efficient PV cells for indoor applications has attracted tremendous attention. Therefore, different types of PV materials, such as inorganic, dye-sensitized, organic, and perovskite materials, have been employed for harvesting low-intensity indoor light energy. Although considerable efforts have been made by researchers to develop low-cost, stable, and efficient PV cells for indoor applications, Extensive investigation is necessary to resolve some critical issues concerning PV cells, such as environmental stability, lifetime, large-area fabrication, mechanical flexibility, and production cost. To address these issues, a systematic review of these aspects will be highly useful to the research community. This study discusses the current status of the development of indoor PV cells based on previous reports. First, we have provided relevant background information. Then, we have described the different indoor light sources, and subsequently critically reviewed previous reports regarding indoor solar cells based on different active materials such as inorganic, dye-sensitized, organic, and perovskite. Finally, we have placed an attempt to provide insight into factors needed to further improve the feasibility of PV technology for indoor applications.

7.
Sensors (Basel) ; 20(7)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276407

ABSTRACT

The present study compared the mechanical, electrical, morphological, and piezoresistive characteristics of epoxy-based sensing nanocomposites fabricated with inclusions of hybridized networks of four different carbon nanomaterials (CNMs), such as carbon nanotube (CNT), graphene, carbon nanofiber (CNF), and graphite nanoplatelet (GNP). Enhancements in elastic modulus and electrical conductivity were achieved by CNT-graphene composites and CNT-CNF composites, and these were explained by the morphological observations carried out in the present study and experimental studies found in the literature. The greatest gauge factor was accomplished by the CNT-GNP composite, followed by the CNT-CNF composite among composites where the CNM networks were sufficiently formed with a content ratio of 3%. The two types of the composites outperformed the composites incorporating solely CNT in terms of gauge factor, and this superiority was explained with the excluded volume theory.

8.
Polymers (Basel) ; 11(9)2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484316

ABSTRACT

A comparative study of the electrical performance of triboelectric nanogenerators (TENGs) with plain- and 2/1 twill-woven cotton textiles was conducted. Furthermore, the microstructures of the cotton fiber surfaces were examined to understand the fundamental mechanical interaction among the cotton fibers in the TENGs. The TENG with 2/1 twill-woven cotton textiles exhibited higher output voltages compared to that with plain-woven cotton textiles. The difference in the output voltage between the two types of TENGs resulted from the difference in triboelectric charge generation between the constituent cotton textiles. The higher output voltage of the TENG with 2/1 twill-woven cotton textiles was attributed to the higher density in triboelectric interactions among the cotton fiber molecules.

9.
J Nanosci Nanotechnol ; 19(8): 4638-4642, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-30913760

ABSTRACT

We demonstrate the preparation of water-dispersible polyaniline:polystyrene sulfonate (PANI:PSS), which was doped with camphorsulfonic acid (CSA) and co-doped with poly (4-styrenesulfonic acid) (PSS). The proper formation of the PANI and PANI:PSS was verified by FTIR measurements. The synthesized samples were further characterized via UV-vis spectroscopy. The intensive study on the current density (J)-voltage (V) characteristics within the temperature range (143-303 K) of the synthesized sample was performed systematically. The electrical study shows that the doping of PANI with CSA as a dopant and PSS as a co-dopant significantly improves the overall semi-conducting property of PANI. The detailed analysis of the current density (J)-voltage (V) curve at various temperatures reveals the electrical conduction behavior, which follows the trap-dependent space-charge limited conduction (SCLC) mechanism.

10.
Biomed Res Int ; 2016: 5762781, 2016.
Article in English | MEDLINE | ID: mdl-26904681

ABSTRACT

The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.


Subject(s)
Copper/toxicity , Waste Disposal, Fluid , Wastewater/chemistry , Water Purification , Anaerobiosis , Carbon/chemistry , Copper/chemistry , Rubber/chemistry , Sewage/chemistry , Silicon Dioxide/chemistry , Wastewater/toxicity , Wood/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...