Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Physiol ; 237(2): 1353-1371, 2022 02.
Article in English | MEDLINE | ID: mdl-34632595

ABSTRACT

Insufficient-heart function is associated with myocardial insulin resistance in the elderly, particularly associated with long-QT, in a dependency on dysfunctional KCNQ1/KCNE1-channels. So, we aimed to examine the contribution of alterations in KCNQ1/KCNE1-current (IKs ) to the aging-related remodeling of the heart as well as the role of insulin treatment on IKs in the aged rats. Prolonged late-phase action potential (AP) repolarization of ventricular cardiomyocytes from insulin-resistant 24-month-old rats was significantly reversed by in vitro treatment of insulin or PKG inhibitor (in vivo, as well) via recovery in depressed IKs . Although the protein level of either KCNQ1 or KCNE1 in cardiomyocytes was not affected with aging, PKG level was significantly increased in those cells. The inhibited IKs in ß3 -ARs-stimulated cells could be reversed with a PKG inhibitor, indicating the correlation between PKG-activation and ß3 -ARs activation. Furthermore, in vivo treatment of aged rats, characterized by ß3 -ARs activation, with either insulin or a PKG inhibitor for 2 weeks provided significant recoveries in IKs , prolonged late phases of APs, prolonged QT-intervals, and low heart rates without no effect on insulin resistance. In vivo insulin treatment provided also significant recovery in increased PKG and decreased PIP2 level, without the insulin effect on the KCNQ1 level in ß3 -ARs overexpressed cells. The inhibition of IKs in aged-rat cardiomyocytes seems to be associated with activated ß3 -ARs dependent remodeling in the interaction between KCNQ1 and KCNE1. Significant recoveries in ventricular-repolarization of insulin-treated aged cardiomyocytes via recovery in IKs strongly emphasize two important issues: (1) IKs can be a novel target in aging-associated remodeling in the heart and insulin may be a cardioprotective agent in the maintenance of normal heart function during the aging process. (2) This study is one of the first to demonstrate insulin's benefits on long-QT in insulin-resistant aged rats by accelerating the ventricular AP repolarization through reversing the depressed IKs via affecting the ß3 -ARs signaling pathway and particularly affecting activated PKG.


Subject(s)
Insulin Resistance , Long QT Syndrome , Potassium Channels, Voltage-Gated , Action Potentials , Animals , Insulin/metabolism , Insulin/pharmacology , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Long QT Syndrome/metabolism , Potassium Channels, Voltage-Gated/metabolism , Rats , Signal Transduction
2.
PeerJ ; 9: e12314, 2021.
Article in English | MEDLINE | ID: mdl-34721988

ABSTRACT

Identification of the key processes involved in the tumor progression, malignancy and the molecular factors which are responsible for the transition of the cirrhotic cells to the tumor cells, contribute to the detection of biomarkers for diagnosis of hepatocellular carcinoma (HCC) at an early stage. According to clinical data, HCC is mostly characterized by a significant decrease in zinc levels. It is strongly implied that zinc deficiency is the major event required in the early stages of tumor formation and development of malignancy. Due to this reason, the definition of the molecular players which have a role in zinc homeostasis and cellular zinc level could give us a clue about the transition state of the cirrhosis to hepatic tumor formation. Despite the well-known implications of zinc in the development of HCCthe correlation of the expression of zinc transporter proteins with tumor progression and malignancy remain largely unknown. In the present study, we evaluated in detail the relationship of zinc deficiency on the prognosis of early HCC patients. In this study, we aimed to test the potential zinc transporters which contribute tothe transformation of cirrhosis to HCCand the progression of HCC. Among the 24 zinc transporter proteins, the proteins to be examined were chosen by using Gene Expression Profiling Interactive Analysis (GEPIA) webpage and RNA-seq analysis using TCGA database. ZIP14 and ZIP5 transporters were found as common differentially expressed genes from both bioinformatic analyses. ZnT1, ZnT7 and ZIP7 transporters have been associated with tumor progression. Relative abundance of ZnT1, ZIP5 and ZIP14 protein level was determined by immunohistochemistry (IHC) in surgically resected liver specimens from 16 HCC patients at different stages. IHC staining intensity was analyzed by using ImageJ software and scored with the histological scoring (H-score) method. The staining of ZnT1 was significantly higher in Grade III comparing to Grade II and Grade I. On the contrary, ZIP14 staining decreased almost 10-foldcomparing to Grade Iand Grade II. ZIP5 staining was detected almost 2-fold higher in cirrhosis than HCC. But ZnT1 staining was observed almost 3-fold lower in cirrhosis comparing to HCC. Intracellular free zinc level was measured by flow cytometry in Hep40 and Snu398 cells using FluoZin-3 dye. The intracellular free zinc level was almost 9-fold decreased in poor differentiated Snu398 HCC cells comparing to well differentiated Hep40 HCC cells.This report establishes for the first time the correlation between the expression pattern of ZIP14, ZnT1 and ZIP5 and significant zinc deficiency which occurs concurrently with the advancing of malignancy. Our results provide new molecular insight into ZnT1, ZIP14 and ZIP5 mediated regulation of cellular zinc homeostasis and indicate that zinc transporters might be important factors and events in HCC malignancy, which can lead to the development of early biomarkers.

3.
PeerJ ; 9: e12071, 2021.
Article in English | MEDLINE | ID: mdl-34595066

ABSTRACT

Regulation of the efficacy of epigenetic modifiers is regarded as an important control mechanism in the determination and differentiation of stem cell fate. Studies are showing that the effect of estrogen is important in the differentiation of mesenchymal stem cells (MSCs) into adipocytes, osteocytes, and chondrocytes. Activation of certain transcription factors and epigenetic modifications in related genes play an active role in the initiation and completion of adipogenic differentiation. Understanding the role of estrogen in diseases such as obesity, which increases with the onset of menopause, will pave the way for more effective use of estrogen as a therapeutic option. Demonstration of the differentiation tendencies of MSCs change in the presence/absence of estrogen, especially the evaluation of reversible epigenetic changes, will provide valuable information for clinical applications. In this study, the effect of estrogen on the expression of genes involved in adipogenic differentiation of MSCs and accompanying epigenetic modifications was investigated. Our results showed that estrogen affects the expression of adipogenesis-related transcription factors such as PPARy, C/EBPα and Adipsin. In addition, after estrogen treatment, increased accumulation of estrogen receptor alpha (ERα) and repressive epigenetic markers such as H3K27me2 and H3K27me3 were observed on the promoter of given transcription factors. By using co-immunoprecipitation experiments we were also able to show that ERα physically interacts with the zeste homolog 2 (EZH2) H3K27 methyltransferase in MSCs. We propose that the increase of H3K27me2 and H3K27me3 markers on adipogenic genes upon estrogen treatment may be mediated by the direct interaction of ERα and EZH2. Taken together, these findings suggest that estrogen has a role as an epigenetic switcher in the regulation of H3K27 methylation leading to suppression of adipogenic differentiation of MSC.

4.
Cardiovasc Drugs Ther ; 34(4): 487-501, 2020 08.
Article in English | MEDLINE | ID: mdl-32377826

ABSTRACT

BACKGROUND: Previous studies have demonstrated that a high-carbohydrate intake could induce metabolic syndrome (MetS) in male rats with marked cardiac functional abnormalities. In addition, studies mentioned some benefits of insulin application on these complications, but there are considerable disagreements among their findings. Therefore, we aimed to extend our knowledge on the in-vitro influence of insulin on left ventricular dysfunction and also in the isolated cardiomyocytes from MetS rats. RESULTS: At the organ function level, an acute insulin application (100-nM) provided an important beneficial effect on the left ventricular developed pressure in MetS rats. Furthermore, to treat the freshly isolated cardiomyocytes from MetS rats with insulin provided marked recoveries in elevated resting intracellular Ca2+-level, as well as significant prevention of prolonged action potential through an augmentation in depressed K+-channel currents. Insulin also normalized the cellular levels of increased ROS and phosphorylation of PKCα, together with normalizations of apoptotic markers in MetS cardiomyocytes through the insulin-mediated regulation of phospho-Akt. Since not only elevated PKCα-activity but also reductions in phospho-Akt are key modulators of titin-based cardiomyocyte stiffening in hyperglycemia, insulin treatment of the cardiomyocytes prevented the activation of titin via the above pathways. Furthermore, CK2α-activation and NOS-phosphorylation could be prevented with insulin treatment. Mechanistically, we found that impaired insulin signaling and elevated PKCα and CK2α activities, as well as depressed Akt phosphorylation, are key modulators of titin-based cardiomyocyte stiffening in MetS rats. CONCLUSION: We propose that restoring normal kinase activities and also increases in phospho-Akt by insulin can contribute marked recoveries in MetS heart function, indicating a promising approach to modulate titin-associated factors in heart dysfunction associated with type-2 diabetes mellitus. Graphical Abstract.


Subject(s)
Casein Kinase II/metabolism , Connectin/metabolism , Hypoglycemic Agents/pharmacology , Insulin Resistance , Insulin/pharmacology , Metabolic Syndrome/drug therapy , Myocytes, Cardiac/drug effects , Ventricular Dysfunction, Left/drug therapy , Ventricular Function, Left/drug effects , Action Potentials/drug effects , Animals , Calcium Signaling/drug effects , Disease Models, Animal , Isolated Heart Preparation , Male , Metabolic Syndrome/enzymology , Metabolic Syndrome/physiopathology , Myocytes, Cardiac/enzymology , Oxidative Stress/drug effects , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Ventricular Dysfunction, Left/enzymology , Ventricular Dysfunction, Left/physiopathology , Ventricular Pressure/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...