Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Sports Med ; 54(6): 1419-1458, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561436

ABSTRACT

Emerging evidence published over the past decade has highlighted the role of DNA methylation in skeletal muscle function and health, including as an epigenetic transducer of the adaptive response to exercise. In this review, we aim to synthesize the latest findings in this field to highlight: (1) the shifting understanding of the genomic localization of altered DNA methylation in response to acute and chronic aerobic and resistance exercise in skeletal muscle (e.g., promoter, gene bodies, enhancers, intergenic regions, un-annotated regions, and genome-wide methylation); (2) how these global/regional methylation changes relate to transcriptional activity following exercise; and (3) the factors (e.g., individual demographic or genetic features, dietary, training history, exercise parameters, local epigenetic characteristics, circulating hormones) demonstrated to alter both the pattern of DNA methylation after exercise, and the relationship between DNA methylation and gene expression. Finally, we discuss the changes in non-CpG methylation and 5-hydroxymethylation after exercise, as well as the importance of emerging single-cell analyses to future studies-areas of increasing focus in the field of epigenetics. We anticipate that this review will help generate a framework for clinicians and researchers to begin developing and testing exercise interventions designed to generate targeted changes in DNA methylation as part of a personalized exercise regimen.


Subject(s)
Adaptation, Physiological , DNA Methylation , Epigenesis, Genetic , Exercise , Muscle, Skeletal , Humans , Exercise/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Resistance Training
2.
iScience ; 27(1): 108632, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38188524

ABSTRACT

Endurance exercise training is beneficial for skeletal muscle health, but it is unclear if this type of exercise can target or correct the molecular mechanisms of facioscapulohumeral muscular dystrophy (FSHD). Using the FLExDUX4 murine model of FSHD characterized by chronic, low levels of pathological double homeobox protein 4 (DUX4) gene expression, we show that 6 weeks of voluntary, free wheel running improves running performance, strength, mitochondrial function, and sarcolemmal repair capacity, while slowing/reversing skeletal muscle fibrosis. These improvements are associated with restored transcriptional activity of gene networks/pathways regulating actin cytoskeletal signaling, vascular remodeling, inflammation, fibrosis, and muscle mass toward wild-type (WT) levels. However, FLExDUX4 mice exhibit blunted increases in mitochondrial content with training and persistent transcriptional overactivation of hypoxia, inflammatory, angiogenic, and cytoskeletal pathways. These results identify exercise-responsive and non-responsive molecular pathways in FSHD, while providing support for the use of endurance-type exercise as a non-invasive treatment option.

3.
J Pers Med ; 13(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37511653

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is caused by the aberrant expression of the double homeobox 4 (DUX4) gene. The FLExDUX4 mouse model carries an inverted human DUX4 transgene which has leaky DUX4 transgene expression at a very low level. No overt muscle pathology was reported before 16 weeks. The purpose of this study is to track and characterize the FLExDUX4 phenotypes for a longer period, up to one year old. In addition, transcriptomic changes in the muscles of 2-month-old mice were investigated using RNA-seq. The results showed that male FLExDUX4 mice developed more severe phenotypes and at a younger age in comparison to the female mice. These include lower body and muscle weight, and muscle weakness measured by grip strength measurements. Muscle pathological changes were observed at older ages, including fibrosis, decreased size of type IIa and IIx myofibers, and the development of aggregates containing TDP-43 in type IIb myofibers. Muscle transcriptomic data identified early molecular changes in biological pathways regulating circadian rhythm and adipogenesis. The study suggests a slow progressive change in molecular and muscle phenotypes in response to the low level of DUX4 expression in the FLExDUX4 mice.

4.
Mol Cell Proteomics ; 22(8): 100605, 2023 08.
Article in English | MEDLINE | ID: mdl-37353005

ABSTRACT

Proteomic studies in facioscapulohumeral muscular dystrophy (FSHD) could offer new insight into disease mechanisms underpinned by post-transcriptional processes. We used stable isotope (deuterium oxide; D2O) labeling and peptide mass spectrometry to investigate the abundance and turnover rates of proteins in cultured muscle cells from two individuals affected by FSHD and their unaffected siblings (UASb). We measured the abundance of 4420 proteins and the turnover rate of 2324 proteins in each (n = 4) myoblast sample. FSHD myoblasts exhibited a greater abundance but slower turnover rate of subunits of mitochondrial respiratory complexes and mitochondrial ribosomal proteins, which may indicate an accumulation of "older" less viable mitochondrial proteins in myoblasts from individuals affected by FSHD. Treatment with a 2'-O-methoxyethyl modified antisense oligonucleotide targeting exon 3 of the double homeobox 4 (DUX4) transcript tended to reverse mitochondrial protein dysregulation in FSHD myoblasts, indicating the effect on mitochondrial proteins may be a DUX4-dependent mechanism. Our results highlight the importance of post-transcriptional processes and protein turnover in FSHD pathology and provide a resource for the FSHD research community to explore this burgeoning aspect of FSHD.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Proteome/metabolism , Proteomics , Homeodomain Proteins/metabolism , Myoblasts/metabolism , Muscle, Skeletal/metabolism
5.
Cell Metab ; 34(10): 1431-1441.e5, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36084645

ABSTRACT

Lifestyle therapy (energy restriction and exercise) is the cornerstone of therapy for people with type 2 diabetes (T2D) but is difficult to implement. We conducted an 8-month randomized controlled trial in persons with obesity and T2D (17 women and 1 man) to determine the therapeutic effects and potential mechanisms of intensive lifestyle therapy on cardiometabolic function. Intensive lifestyle therapy was conducted at the worksite to enhance compliance and resulted in marked (17%) weight loss and beneficial changes in body fat mass, intrahepatic triglyceride content, cardiorespiratory fitness, muscle strength, glycemic control, ß cell function, and multi-organ insulin sensitivity, which were associated with changes in muscle NAD+ biosynthesis, sirtuin signaling, and mitochondrial function and in adipose tissue remodeling. These findings demonstrate that intensive lifestyle therapy provided at the worksite has profound therapeutic clinical and physiological effects in people with T2D, which are likely mediated by specific alterations in skeletal muscle and adipose tissue biology.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Sirtuins , Cardiovascular Diseases/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Female , Humans , Life Style , Male , NAD , Obesity/complications , Obesity/therapy , Triglycerides , Workplace
6.
JIMD Rep ; 62(1): 74-84, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765401

ABSTRACT

BACKGROUND: Muscle weakness and exercise intolerance contribute to reduced quality of life (QOL) in Barth syndrome (BTHS). Our group previously found that 12 weeks of resistance exercise training (RET) improved muscle strength, however, did not increase muscle (lean) mass or QOL in n = 3 young adults with BTHS. The overall objective of this pilot study was to examine the safety and effectiveness of RET plus daily protein supplementation (RET + protein) on muscle strength, skeletal muscle mass, exercise tolerance, cardiac function, and QOL in late adolescents/young adults with BTHS. METHODS: Participants with BTHS (n = 5, age 27 ± 7) performed 12 weeks of supervised RET (60 minutes per session, three sessions/week) and consumed 42 g/day of whey protein. Muscle strength, muscle mass, exercise capacity, cardiac function, and health-related QOL were assessed pre-post intervention. RESULTS: RET + protein was safe, increased muscle strength and quality of life, and tended to increase lean mass. CONCLUSIONS: RET + protein appears safe, increases muscle strength and quality of life and tends to increase lean mass. Larger studies are needed to confirm these findings and to fully determine the effects of RET + protein in individuals with BTHS.

7.
Diabetes ; 70(5): 1130-1144, 2021 05.
Article in English | MEDLINE | ID: mdl-33526590

ABSTRACT

Two-thirds of people with type 2 diabetes mellitus (T2DM) have or will develop chronic kidney disease (CKD), which is characterized by rapid renal decline that, together with superimposed T2DM-related metabolic sequelae, synergistically promotes early frailty and mobility deficits that increase the risk of mortality. Distinguishing the mechanisms linking renal decline to mobility deficits in CKD progression and/or increasing severity in T2DM is instrumental both in identifying those at high risk for functional decline and in formulating effective treatment strategies to prevent renal failure. While evidence suggests that skeletal muscle energetics may relate to the development of these comorbidities in advanced CKD, this has never been assessed across the spectrum of CKD progression, especially in T2DM-induced CKD. Here, using next-generation sequencing, we first report significant downregulation in transcriptional networks governing oxidative phosphorylation, coupled electron transport, electron transport chain (ETC) complex assembly, and mitochondrial organization in both middle- and late-stage CKD in T2DM. Furthermore, muscle mitochondrial coupling is impaired as early as stage 3 CKD, with additional deficits in ETC respiration, enzymatic activity, and increased redox leak. Moreover, mitochondrial ETC function and coupling strongly relate to muscle performance and physical function. Our results indicate that T2DM-induced CKD progression impairs physical function, with implications for altered metabolic transcriptional networks and mitochondrial functional deficits as primary mechanistic factors early in CKD progression in T2DM.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Electron Transport Chain Complex Proteins/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Renal Insufficiency, Chronic/metabolism , Transcriptome/genetics , Animals , Diabetes Mellitus, Type 2/pathology , Electron Transport Chain Complex Proteins/genetics , Humans , Renal Insufficiency, Chronic/pathology
8.
J Nucl Cardiol ; 28(4): 1649-1659, 2021 08.
Article in English | MEDLINE | ID: mdl-31705425

ABSTRACT

BACKGROUND: Barth syndrome (BTHS) is a rare X-linked condition resulting in cardiomyopathy, however; the effects of BTHS on myocardial substrate metabolism and its relationships with cardiac high-energy phosphate metabolism and left ventricular (LV) function are unknown. We sought to characterize myocardial glucose, fatty acid (FA), and leucine metabolism in BTHS and unaffected controls and examine their relationships with cardiac high-energy phosphate metabolism and LV function. METHODS/RESULTS: Young adults with BTHS (n = 14) and unaffected controls (n = 11, Control, total n = 25) underwent bolus injections of 15O-water and 1-11C-glucose, palmitate, and leucine and concurrent positron emission tomography imaging. LV function and cardiac high-energy phosphate metabolism were examined via echocardiography and 31P magnetic resonance spectroscopy, respectively. Myocardial glucose extraction fraction (21 ± 14% vs 10 ± 8%, P = .03) and glucose utilization (828.0 ± 470.0 vs 393.2 ± 361.0 µmol·g-1·min-1, P = .02) were significantly higher in BTHS vs Control. Myocardial FA extraction fraction (31 ± 7% vs 41 ± 6%, P < .002) and uptake (0.25 ± 0.04 vs 0.29 ± 0.03 mL·g-1·min-1, P < .002) were significantly lower in BTHS vs Control. Altered myocardial metabolism was associated with lower cardiac function in BTHS. CONCLUSIONS: Myocardial substrate metabolism is altered and may contribute to LV dysfunction in BTHS. Clinical Trials #: NCT01625663.


Subject(s)
Barth Syndrome/diagnostic imaging , Barth Syndrome/metabolism , Fatty Acids/metabolism , Glucose/metabolism , Myocardium/metabolism , Ventricular Function, Left/physiology , Adult , Barth Syndrome/physiopathology , Case-Control Studies , Echocardiography , Humans , Leucine/metabolism , Magnetic Resonance Spectroscopy , Male , Positron-Emission Tomography , Young Adult
9.
Mol Ther ; 29(2): 848-858, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33068777

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by a progressive, asymmetric weakening of muscles, starting with those in the upper body. It is caused by aberrant expression of the double homeobox protein 4 gene (DUX4) in skeletal muscle. FSHD is currently incurable. We propose to develop a therapy for FSHD using antisense 2'-O-methoxyethyl (2'-MOE) gapmers, to knock down DUX4 mRNA expression. Using immortalized patient-derived muscle cells and local intramuscular injections in the FLExDUX4 FSHD mouse model, we showed that our designed 2'-MOE gapmers significantly reduced DUX4 transcript levels in vitro and in vivo, respectively. Furthermore, in vitro, we observed significantly reduced expression of DUX4-activated downstream targets, restoration of FSHD signature genes by RNA sequencing, significant improvements in myotube morphology, and minimal off-target activity. This work facilitates the development of a promising candidate therapy for FSHD and lays down the foundation for in vivo systemic treatment studies.


Subject(s)
Gene Knockdown Techniques , Gene Silencing , Genetic Therapy , Homeodomain Proteins/genetics , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/therapy , Oligonucleotides, Antisense , Animals , Disease Models, Animal , Humans , Mice , Mice, Knockout , Muscle, Skeletal/metabolism
10.
Med Sci Sports Exerc ; 53(4): 694-703, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33044441

ABSTRACT

INTRODUCTION: Prediabetes is a major risk factor for type 2 diabetes and cardiovascular diseases. Although resistance exercise (RE) is recommended for individuals with prediabetes, the effects of RE on postprandial glucose metabolism in this population are poorly understood. Therefore, the purpose of this study was to elucidate how RE affects postprandial glucose kinetics, insulin sensitivity, beta cell function, and glucose oxidation during the subsequent meal in sedentary men with obesity and prediabetes. METHODS: We studied 10 sedentary men with obesity (body mass index, 33 ± 3 kg·m-2) and prediabetes by using a randomized, cross-over study design. After an overnight fast, participants completed either a single bout of whole-body RE (seven exercises, 3 sets of 10-12 repetitions at 80% one-repetition maximum each) or an equivalent period of rest. Participants subsequently completed a mixed meal test in conjunction with an intravenous [6,6-2H2]glucose infusion to determine basal and postprandial glucose rate of appearance (Ra) and disappearance (Rd) from plasma, insulin sensitivity, and the insulinogenic index (a measure of beta cell function). Skeletal muscle biopsies were obtained 90 min postmeal to evaluate pyruvate-supported and maximal mitochondrial respiration. Whole-body carbohydrate oxidation was assessed using indirect calorimetry. RESULTS: RE significantly reduced the postprandial rise in glucose Ra and plasma glucose concentration. Postprandial insulin sensitivity was significantly greater after RE, whereas postprandial plasma insulin concentration was significantly reduced. RE had no effect on the insulinogenic index, postprandial pyruvate respiration, or carbohydrate oxidation. CONCLUSION/INTERPRETATION: A single bout of RE has beneficial effects on postprandial glucose metabolism in men with obesity and prediabetes by increasing postprandial insulin sensitivity, reducing the postprandial rise in glucose Ra, and reducing postprandial plasma insulin concentration.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Obesity/metabolism , Prediabetic State/metabolism , Resistance Training , Adult , Blood Glucose/metabolism , Carbohydrate Metabolism , Cross-Over Studies , Glucose/administration & dosage , Humans , Insulin Resistance , Insulin-Secreting Cells/metabolism , Male , Middle Aged , Mitochondria, Muscle/metabolism , Oxidation-Reduction , Postprandial Period , Pyruvic Acid/metabolism , Sedentary Behavior
11.
Mol Genet Metab Rep ; 25: 100675, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33204638

ABSTRACT

Barth syndrome (BTHS) is a rare, X-linked cardiomyopathy that is characterized by abnormalities in glucose and lipid metabolism, with less known regarding amino acid metabolism. This pilot study characterized whole-body arginine kinetics and found lower arginine rate of appearance into plasma (0.69 ± 0.09 vs. 0.88 ± 0.06 µmol/kgFFM/min, p < 0.01) and arginine non-oxidative disposal rate (0.64 ± 0.11 vs. 0.80 ± 0.03 µmol/kgFFM/min, p < 0.02) in adolescents and young adults with BTHS compared to Controls. This study provides a foundation for more in-depth studies on how arginine and potentially other amino acid abnormalities contribute to the pathology and clinical manifestations of BTHS.

12.
Int J Mol Sci ; 21(15)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759720

ABSTRACT

Deficits in plasma membrane repair have been identified in dysferlinopathy and Duchenne Muscular Dystrophy, and contribute to progressive myopathy. Although Facioscapulohumeral Muscular Dystrophy (FSHD) shares clinicopathological features with these muscular dystrophies, it is unknown if FSHD is characterized by plasma membrane repair deficits. Therefore, we exposed immortalized human FSHD myoblasts, immortalized myoblasts from unaffected siblings, and myofibers from a murine model of FSHD (FLExDUX4) to focal, pulsed laser ablation of the sarcolemma. Repair kinetics and success were determined from the accumulation of intracellular FM1-43 dye post-injury. We subsequently treated FSHD myoblasts with a DUX4-targeting antisense oligonucleotide (AON) to reduce DUX4 expression, and with the antioxidant Trolox to determine the role of DUX4 expression and oxidative stress in membrane repair. Compared to unaffected myoblasts, FSHD myoblasts demonstrate poor repair and a greater percentage of cells that failed to repair, which was mitigated by AON and Trolox treatments. Similar repair deficits were identified in FLExDUX4 myofibers. This is the first study to identify plasma membrane repair deficits in myoblasts from individuals with FSHD, and in myofibers from a murine model of FSHD. Our results suggest that DUX4 expression and oxidative stress may be important targets for future membrane-repair therapies.


Subject(s)
Homeodomain Proteins/genetics , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Oxidative Stress/genetics , Adult , Aged , Animals , Antioxidants/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Homeodomain Proteins/antagonists & inhibitors , Humans , Male , Mice , Middle Aged , Muscle Fibers, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Muscular Dystrophy, Facioscapulohumeral/therapy , Myoblasts/metabolism , Myofibrils/genetics , Myofibrils/metabolism , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Oxidative Stress/drug effects
13.
Diabetologia ; 63(3): 611-623, 2020 03.
Article in English | MEDLINE | ID: mdl-31873788

ABSTRACT

AIMS/HYPOTHESIS: Prediabetes is associated with postprandial hypertriacylglycerolaemia. Resistance exercise acutely lowers postprandial plasma triacylglycerol (TG); however, the changes in lipid metabolism that mediate this reduction are poorly understood. The aim of this study was to identify the constitutive metabolic mechanisms underlying the changes in postprandial lipid metabolism after resistance exercise in obese men with prediabetes. METHODS: We evaluated the effect of a single bout of whole-body resistance exercise (seven exercises, three sets, 10-12 repetitions at 80% of one-repetition maximum) on postprandial lipid metabolism in ten middle-aged (50 ± 9 years), overweight/obese (BMI: 33 ± 3 kg/m2), sedentary men with prediabetes (HbA1c >38 but <48 mmol/mol [>5.7% but <6.5%]), or fasting plasma glucose >5.6 mmol/l but <7.0 mmol/l or 2 h OGTT glucose >7.8 mmol/l but <11.1 mmol/l). We used a randomised, crossover design with a triple-tracer mixed meal test (ingested [(13C4)3]tripalmitin, i.v. [U-13C16]palmitate and [2H5]glycerol) to evaluate chylomicron-TG and total triacylglycerol-rich lipoprotein (TRL)-TG kinetics. We used adipose tissue and skeletal muscle biopsies to evaluate the expression of genes regulating lipolysis and lipid oxidation, skeletal muscle respirometry to evaluate oxidative capacity, and indirect calorimetry to assess whole-body lipid oxidation. RESULTS: The single bout of resistance exercise reduced the lipaemic response to a mixed meal in obese men with prediabetes without changing chylomicron-TG or TRL-TG fractional clearance rates. However, resistance exercise reduced endogenous and meal-derived fatty acid incorporation into chylomicron-TG and TRL-TG. Resistance exercise also increased whole-body lipid oxidation, skeletal muscle mitochondrial respiration, oxidative gene expression in skeletal muscle, and the expression of key lipolysis genes in adipose tissue. CONCLUSIONS/INTERPRETATION: A single bout of resistance exercise improves postprandial lipid metabolism in obese men with prediabetes, which may mitigate the risk for cardiovascular disease and type 2 diabetes.


Subject(s)
Lipid Metabolism/physiology , Obesity/therapy , Overweight/therapy , Postprandial Period/physiology , Prediabetic State/therapy , Resistance Training , Adult , Aged , Chylomicrons/blood , Chylomicrons/metabolism , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Humans , Insulin Resistance/physiology , Lipoproteins, VLDL/blood , Lipoproteins, VLDL/metabolism , Male , Middle Aged , Muscle, Skeletal/metabolism , Obesity/complications , Obesity/metabolism , Overweight/complications , Overweight/metabolism , Prediabetic State/complications , Prediabetic State/metabolism , Resistance Training/methods , Treatment Outcome , Triglycerides/blood , Triglycerides/metabolism
14.
J Inherit Metab Dis ; 42(3): 480-493, 2019 05.
Article in English | MEDLINE | ID: mdl-30924938

ABSTRACT

Barth syndrome (BTHS) is a rare X-linked condition resulting in abnormal mitochondria, cardioskeletal myopathy, and growth delay; however, the effects of BTHS on substrate metabolism regulation and their relationships with tissue function in humans are unknown. We sought to characterize glucose and fat metabolism during rest, submaximal exercise, and postexercise rest in children, adolescents, and young adults with BTHS and unaffected controls and examine their relationships with cardioskeletal energetics and function. Children/adolescents and young adults with BTHS (n = 29) and children/adolescent and young adult control participants (n = 28, total n = 57) underwent an infusion of 6'6'H2 glucose and U-13 C palmitate and indirect calorimetry during rest, 30-minutes of moderate exercise (50% V˙O2peak ), and recovery. Cardiac function, cardioskeletal mitochondrial energetics, and exercise capacity were examined via echocardiography, 31 P magnetic resonance spectroscopy, and peak exercise testing, respectively. The glucose turnover rate was significantly higher in individuals with BTHS during rest (33.2 ± 9.8 vs 27.2 ± 8.1 µmol/kgFFM/min, P < .01) and exercise (34.7 ± 11.2 vs 29.5 ± 8.8 µmol/kgFFM/min, P < .05) and tended to be higher postexercise (33.7 ± 10.2 vs 28.8 ± 8.0 µmol/kgFFM/min, P < .06) compared to controls. Increases in total fat (-3.9 ± 7.5 vs 10.5 ± 8.4 µmol/kgFFM/min, P < .0001) and plasma fatty acid oxidation rates (0.0 ± 1.8 vs 5.1 ± 3.9 µmol/kgFFM/min, P < .0001) from rest to exercise were severely blunted in BTHS compared to controls. Conclusion: An inability to upregulate fat metabolism during moderate intensity exercise appears to be partially compensated by elevations in glucose metabolism. Derangements in fat and glucose metabolism are characteristic of the pathophysiology of BTHS. A severely blunted ability to upregulate fat metabolism during a modest level of physical activity is a defining pathophysiologic characteristic in children, adolescents, and young adults with BTHS.


Subject(s)
Barth Syndrome/metabolism , Exercise , Fatty Acids/blood , Lipid Metabolism , Adolescent , Adult , Barth Syndrome/blood , Blood Glucose/metabolism , Calorimetry, Indirect , Case-Control Studies , Child , Echocardiography , Exercise Test , Female , Humans , Male , Mitochondria/metabolism , Oxidation-Reduction , Young Adult
15.
PLoS One ; 13(5): e0197776, 2018.
Article in English | MEDLINE | ID: mdl-29795646

ABSTRACT

Barth syndrome (BTHS) is an ultra-rare, X-linked recessive disorder characterized by cardio-skeletal myopathy, exercise intolerance, and growth delay. Oxygen uptake during peak exercise (VO2peak) has been shown to be severely limited in individuals with BTHS however; the trajectory of VO2peak from childhood to young adulthood is unknown. The objective of this study was to describe VO2peak from childhood through young adulthood in BTHS. METHODS AND MATERIALS: VO2peak over time was presented through cross-sectional (n = 33 participants) and a longitudinal analyses (n = 12 participants). Retrospective data were obtained through maximal exercise testing on a cycle ergometer from individuals with BTHS who were or are currently enrolled in a research study during July 2006-September 2017. Participants included in the cross-sectional analysis were divided into 3 groups for analysis: 1) children (n = 13), 2) adolescents (n = 8), and 3) young adults (n = 12). Participants in the longitudinal analysis had at least two exercise tests over a span of 2-9 years. RESULTS: VO2peak relative to body weight (ml/kgBW/min), fat-free mass (FFM) and by percent of predicted VO2peak obtained were not significantly different between children, adolescents and young adults. VO2peak did not longitudinally change over a mean time of ~5 years in late adolescent and young adult participants with repeated tests. A model including both cardiac and skeletal muscle variables best predicted VO2peak. CONCLUSIONS: In conclusion, VO2peak relative to body weight and fat-free mass demonstrates short- and long-term stability from childhood to young adulthood in BTHS with some variability among individuals.


Subject(s)
Barth Syndrome/physiopathology , Oxygen Consumption/physiology , Adolescent , Adult , Body Weight , Child , Cross-Sectional Studies , Echocardiography , Exercise Test , Heart/physiology , Humans , Longitudinal Studies , Muscle, Skeletal/physiology , Retrospective Studies , Young Adult
16.
JIMD Rep ; 41: 63-72, 2018.
Article in English | MEDLINE | ID: mdl-29654548

ABSTRACT

BACKGROUND: Cardioskeletal myopathy is thought to contribute to exercise intolerance, and reduced quality of life (QOL) in Barth syndrome (BTHS). The objectives of this study were to examine: (1) skeletal muscle strength/performance in adolescents and young adults with BTHS and (2) the safety, feasibility, and initial efficacy of 12 weeks of progressive resistance exercise training (RET) on muscle strength, mass, and performance, bone mineral density, exercise tolerance, cardiac function, and QOL in individuals with BTHS. METHODS: Individuals with BTHS (n = 9, 23 ± 6 years), and age-, sex-, and activity level-matched unaffected Controls (n = 7, 26 ± 5 years) underwent baseline testing to assess muscle performance, exercise capacity, cardiac structure and function, body composition, and health-related QOL. Subsequently, n = 3 participants with BTHS performed 12 weeks of supervised RET (60 min per session, 3 sessions/week). All testing was repeated post-RET. RESULTS: BTHS had lower strength and lean muscle mass compared to Controls (all p < 0.05). BTHS also had diminished lower extremity, upper extremity, thoracic spine, lumbar spine, and pelvic bone mineral density (all p < 0.05) and reduced exercise capacity (p < 0.001) compared to Controls. RET was well-tolerated and attended, was not associated with any adverse events, and significantly increased muscle strength (p < 0.05). CONCLUSIONS: Individuals with BTHS demonstrate reduced muscle strength and mass, bone mineral density, and exercise capacity. RET appears safe and well-tolerated in BTHS and promotes increased muscle strength. Larger studies are needed to confirm these improvements and to fully determine the effects of RET in individuals with BTHS.

17.
Can J Diabetes ; 42(5): 478-483, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29567079

ABSTRACT

OBJECTIVES: Diabesity (obesity and diabetes mellitus) has been identified as a potential contributor to early-onset frailty. Impairments contributing to early onset of physical frailty in this population are not well understood, and there is little evidence of the impact of peripheral neuropathy on frailty. The purpose of this study was to determine impairments that contribute to early-onset physical frailty in individuals with diabesity and peripheral neuropathy. METHODS: We studied 105 participants, 82 with diabesity and peripheral neuropathy (57 years of age, body mass index [BMI] 31 kg/m2); 13 with diabesity only (53 years of age, BMI 34 kg/m2) and 10 obese controls (67 years of age, BMI 32 kg/m2). Peripheral neuropathy was determined using Semmes Weinstein monofilaments; physical frailty was classified using the 9-item, modified Physical Performance Test; and knee extension and ankle plantarflexion peak torques were measured using isokinetic dynamometry. RESULTS: Participants with diabesity and peripheral neuropathy were 7.4 times more likely to be classified as physically frail. Impairments in lower-extremity function were associated with classification of frailty. CONCLUSIONS: Individuals with diabesity and peripheral neuropathy are particularly likely to be classified as frail. Earlier identification and interventions aimed at improving lower-extremity function may be important to mitigate the early-onset functional decline.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetic Neuropathies/complications , Diabetic Neuropathies/epidemiology , Frailty/epidemiology , Obesity/complications , Obesity/epidemiology , Adult , Age of Onset , Aged , Body Mass Index , Female , Frailty/etiology , Humans , Male , Middle Aged , Physical Functional Performance , Time Factors
18.
Physiol Rep ; 5(3)2017 Feb.
Article in English | MEDLINE | ID: mdl-28196853

ABSTRACT

Barth syndrome (BTHS) is an X-linked condition characterized by altered cardiolipin metabolism and cardioskeletal myopathy. We sought to compare cardiac and skeletal muscle bioenergetics in children, adolescents, and young adults with BTHS and unaffected controls and examine their relationships with cardiac function and exercise capacity. Children/adolescents and young adults with BTHS (n = 20) and children/adolescent and young adult control participants (n = 23, total n = 43) underwent 31P magnetic resonance spectroscopy (31P-MRS) of the lower extremity (calf) and heart for estimation of skeletal muscle and cardiac bioenergetics. Peak exercise testing (VO2peak) and resting echocardiography were also performed on all participants. Cardiac PCr/ATP ratio was significantly lower in children/adolescents (BTHS: 1.5 ± 0.2 vs. CONTROL: 2.0 ± 0.3, P < 0.01) and adults (BTHS: 1.9 ± 0.2 vs. CONTROL: 2.3 ± 0.2, P < 0.01) with BTHS compared to Control groups. Adults (BTHS: 76.4 ± 31.6 vs. CONTROL: 35.0 ± 7.4 sec, P < 0.01) and children/adolescents (BTHS: 71.5 ± 21.3 vs. CONTROL: 31.4 ± 7.4 sec, P < 0.01) with BTHS had significantly longer calf PCr recovery (τPCr) postexercise compared to controls. Maximal calf ATP production through oxidative phosphorylation (Qmax-lin) was significantly lower in children/adolescents (BTHS: 0.5 ± 0.1 vs. CONTROL: 1.1 ± 0.3 mmol/L per sec, P < 0.01) and adults (BTHS: 0.5 ± 0.2 vs. CONTROL: 1.0 ± 0.2 mmol/L sec, P < 0.01) with BTHS compared to controls. Blunted cardiac and skeletal muscle bioenergetics were associated with lower VO2peak but not resting cardiac function. Cardiac and skeletal muscle bioenergetics are impaired and appear to contribute to exercise intolerance in BTHS.


Subject(s)
Barth Syndrome/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism , Adolescent , Adult , Energy Metabolism , Exercise , Exercise Test , Humans , Young Adult
19.
J Geriatr Phys Ther ; 40(2): 86-94, 2017.
Article in English | MEDLINE | ID: mdl-26859462

ABSTRACT

BACKGROUND AND PURPOSE: Excess lower extremity intermuscular adipose tissue (IMAT), reduced strength, and functional limitations are common in obese individuals with and without diabetes (the former termed diabesity). Individuals with diabesity are particularly susceptible to accelerated sarcopenia, which may be underdiagnosed. The purpose of this study was to determine critical values for leg IMAT volume, plantar flexor (PF) muscle strength, and physical performance that help identify individuals with diabesity who have sarcopenia. METHODS: Forty-three age- and sex-matched obese adults were studied: 12 with type 2 diabetes, 21 with diabetes and peripheral neuropathy, and 10 nondiabetic controls. Dual-energy x-ray absorptiometry-derived skeletal muscle index determined classification of sarcopenia. Leg fat (% IMAT), ankle (PF) peak torque, and power while ascending 10 steps, were used as explanators of sarcopenia. Receiver operating curves identified critical values for each explanator individually. Logistic regression models using all 3 explanators, and only PF torque and stair power, were also created. Receiver operating curve analyses identified the predicted probability that maximized each model's sensitivity and specificity. A leave-one-out cross validation was used to simulate the models' performance in an independent sample. RESULTS AND DISCUSSION: Thirty-two participants were sarcopenic, and 11 were not. Critical values for individual explanators were 21% IMAT, 68 Nm PF torque, and 441 watts of stair power. Predicted probabilities of .76 and .67 were chosen as the optimal cutoff probabilities for the model combining all 3 explanators, and the model combining PF torque and stair power, respectively. The cross-validation analysis produced an accuracy of 82.4%, using the cutoff probability of .5, and an accuracy of 76.5% using the cutoff of 0.76. The area under the curve for the cross validation receiver operating curve analysis was 0.82. Critical values of leg % IMAT, PF torque, and stair power can classify individuals with diabesity as sarcopenic. The results of the cross validation give us confidence that the sample used in this study was representative of the target population, and suggests models created from this sample may perform well in externally derived data sets. CONCLUSION: Clinicians may be able to use these critical values to select interventions that specifically target sarcopenia. Measures of % IMAT, PF torque, and stair power may offer a customized alternative to traditional sarcopenic classification systems, which may not be optimally suited to the common impairments among individuals with diabesity.


Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Obesity/epidemiology , Sarcopenia/epidemiology , Absorptiometry, Photon , Adult , Aged , Cross-Sectional Studies , Diabetes Mellitus, Type 2/rehabilitation , Diabetic Neuropathies/epidemiology , Female , Humans , Male , Middle Aged , Muscle Strength/physiology , Muscle, Skeletal/physiology , Obesity/rehabilitation , Sarcopenia/rehabilitation , Torque
20.
Am J Phys Med Rehabil ; 96(5): 307-314, 2017 May.
Article in English | MEDLINE | ID: mdl-27610553

ABSTRACT

OBJECTIVE: Proper exercise form is critical for the safety and efficacy of therapeutic exercise. This research examines if a novel smartphone application, designed to monitor and provide real-time corrections during resistance training, can reduce performance errors and elicit a motor learning response. DESIGN: Forty-two participants aged 18 to 65 years were randomly assigned to treatment and control groups. Both groups were tested for the number of movement errors made during a 10-repetition set completed at baseline, immediately after, and 1 to 2 weeks after a single training session of knee extensions. The treatment group trained with real-time, smartphone-generated feedback, whereas the control subjects did not. Group performance (number of errors) was compared across test sets using a 2-factor mixed-model analysis of variance. RESULTS: No differences were observed between groups for age, sex, or resistance training experience. There was a significant interaction between test set and group. The treatment group demonstrated fewer errors on posttests 1 and 2 compared with pretest (P < 0.05). There was no reduction in the number of errors on any posttest for control subjects. CONCLUSION: Smartphone apps, such as the one used in this study, may enhance patient supervision, safety, and exercise efficacy across rehabilitation settings. A single training session with the app promoted motor learning and improved exercise performance.


Subject(s)
Athletic Performance , Feedback , Mobile Applications , Resistance Training , Smartphone , Adult , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...