Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Biol Med (Maywood) ; 243(8): 665-676, 2018 05.
Article in English | MEDLINE | ID: mdl-29763386

ABSTRACT

Electrospinning is one of the techniques to produce structured polymeric fibers in the micro or nano scale and to generate novel materials for biomedical proposes. Electrospinning versatility provides fibers that could support different surgical and rehabilitation treatments. However, its diversity in equipment assembly, polymeric materials, and functional molecules to be incorporated in fibers result in profusion of recent biomaterials that are not fully explored, even though the recognized relevance of the technique. The present article describes the main electrospun polymeric materials used in oral applications, and the main aspects and parameters of the technique. Natural and synthetic polymers, blends, and composites were identified from the available literature and recent developments. Main applications of electrospun fibers were focused on drug delivery systems, tissue regeneration, and material reinforcement or modification, although studies require further investigation in order to enable direct use in human. Current and potential usages as biomaterials for oral applications must motivate the development in the use of electrospinning as an efficient method to produce highly innovative biomaterials, over the next few years. Impact statement Nanotechnology is a challenge for many researchers that look for obtaining different materials behaviors by modifying characteristics at a very low scale. Thus, the production of nanostructured materials represents a very important field in bioengineering, in which the electrospinning technique appears as a suitable alternative. This review discusses and provides further explanation on this versatile technique to produce novel polymeric biomaterials for oral applications. The use of electrospun fibers is incipient in oral areas, mainly because of the unfamiliarity with the technique. Provided disclosure, possibilities and state of the art are aimed at supporting interested researchers to better choose proper materials, understand, and design new experiments. This work seeks to encourage many other researchers-Dentists, Biologists, Engineers, Pharmacists-to develop innovative materials from different polymers. We highlight synthetic and natural polymers as trends in treatments to motivate an advance in the worldwide discussion and exploration of this interdisciplinary field.


Subject(s)
Biocompatible Materials/administration & dosage , Nanofibers/administration & dosage , Oral Medicine/methods , Polymers/administration & dosage , Biocompatible Materials/isolation & purification , Drug Carriers/administration & dosage , Equipment and Supplies , Humans , Polymers/isolation & purification , Tissue Scaffolds
2.
Biotechniques ; 57(3): 137-41, 2014.
Article in English | MEDLINE | ID: mdl-25209048

ABSTRACT

Fibroblast cells grown in electrospun polymer scaffolds were stained with platinum blue, a heavy metal stain, and imaged using scanning electron microscopy. Good contrast on the cells was achieved compared with samples that were gold sputter coated. The cell morphology could be clearly observed, and the cells could be distinguished from the scaffold fibers. Here we optimized the required concentration of platinum blue for imaging cells grown in scaffolds and show that a higher concentration causes platinum aggregation. Overall, platinum blue is a useful stain for imaging cells because of its enhanced contrast using scanning electron microscopy (SEM). In the future it would be useful to investigate cell growth and morphology using three-dimensional imaging methods.


Subject(s)
Cell Culture Techniques/methods , Coloring Agents/chemistry , Platinum/chemistry , Tissue Scaffolds , Cell Line , Electrochemical Techniques , Fibroblasts/cytology , Humans , Lactic Acid , Microscopy, Electron, Scanning , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer
SELECTION OF CITATIONS
SEARCH DETAIL
...