Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 881: 163349, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37044351

ABSTRACT

Microplastics (MP) enter the aquatic environment via several pathways. Many research groups have focused on municipal discharge, while research on industrial sources is rare. This study provides one of the first insights into MP occurrence and distribution in the wastewater systems of industrial parks (IPs) and their wastewater treatment plants (IPWWTPs). The effluents from production plants as well as influent, effluent, and internal samples from the IPWWTPs were assessed. Sampling methods for parallel MP mass and number analyses were developed for varying conditions. The total item emissions of MP (≥10 µm) into the environment were analyzed using µ-Raman spectroscopy and ranged from 3 · 102 to 8 · 104 MP m-3, with a median of 6 · 103 MP m-3 per IPWWTP. Masses analyzed using differential scanning calorimetry showed an MP mass discharge into the environment of 0.2 to 11 mg m-3 with a median of 3.7 mg m-3 per IPWWTP. MP item concentrations within an IPWWTP varied by two to three log levels over several days. Fibers were rare in all samples. Polymer types varied depending on the types of industrial sites and the production plants discharging into the IPWWTP. Within an IP, MP could be allocated to its dischargers, which could be useful for future regulatory requirements. Further research is needed to include different types of IPs producing various polymers and additional processing plants to expand this data set.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Microplastics/analysis , Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring , Polymers , Waste Disposal, Fluid
2.
Water Res X ; 17: 100156, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36177246

ABSTRACT

Microplastics (MPs) are ubiquitous in the environment and have been found in every environmental compartment. Wastewater and wastewater treatment plants (WWTPs) have been identified as possible point sources contributing to the emission of microplastic particles (MPP) into the aquatic environment. So far, MPP in wastewater effluents have mainly been analyzed by spectroscopic methods resulting in concentrations as number per volume. In this study, we present mass concentrations in the secondary effluents of four German municipal WWTPs, removal efficiencies of seven post-treatment systems and the resulting load emissions. Differential Scanning Calorimetry (DSC) was used for the analysis of semi-crystalline MPs. The concentrations of secondary effluents ranged from 0.1 to 19.6 µg L-1. Removal efficiencies > 94% were found for a microfiltration membrane (MF), two cloth types of a pile cloth media filter (PCMF), a micro strainer, a discontinuous downflow granulated activated carbon filter (GAC) and a powdered activated carbon (PAC) stage with clarifier and rapid sand filtration. A rapid sand filter (RSF) at WWTP B showed a removal efficiency of 82.38%. Only a continuous upflow GAC filter at WWTP C proved to be unsuitable for MP removal with an average removal efficiency of 1.9%.

3.
Chemosphere ; 258: 127388, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32947665

ABSTRACT

Microplastics enter natural water bodies by a variety of pathways, one of them being wastewater streams. The role of industrial wastewater in overall microplastic emissions has so far only been estimated, because access is usually restricted. This is the first report providing quantitative data on microplastics in industrial wastewaters. The wastewater discharge of three different industrial sites was sampled in the size ranges of small microplastics (10-1000 µm) and large microplastics (1000-5000 µm). Differential scanning calorimetry (DSC) was used to detect and quantify semi-crystalline thermoplastics. Polyethylene (PE) and polypropylene (PP) were the most abundant polymers, but polyamide (PA) and polyethylene terephthalate (PET) were also found. As all three industrial sites had wastewater treatment plants (WWTP), the total concentrations were in the µg L-1 range, comparable to organic micropollutants in municipal WWTP effluents. At one industrial site, the removal capacity of the WWTP was evaluated by sampling and analyzing the influent as well as the effluent. The total microplastics concentration in the influent was in the g L-1 range, yielding a removal capacity of the industrial WWTP of >99.99 %.


Subject(s)
Environmental Monitoring , Microplastics/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Calorimetry, Differential Scanning , Industrial Waste/analysis , Industry , Plastics , Polyethylene , Polymers , Polypropylenes
4.
Sci Total Environ ; 568: 507-511, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27333470

ABSTRACT

Microplastics are increasingly detected in the environment and the consequences on water resources and ecosystems are not clear to date. The present study provides a cost-effective and straightforward method to determine the mass concentrations of polymer types using thermal analysis. Characteristic endothermic phase transition temperatures were determined for seven plastic polymer types using TGA-DSC. Based on that, extracts from wastewater samples were analyzed. Results showed that among the studied polymers, only PE and PP could be clearly identified, while the phase transition signals of the other polymers largely overlap each other. Subsequently, calibration curves were run for PE and PP for qualitative measurements. 240 and 1540mg/m(3) of solid material (12µm to 1mm) was extracted from two wastewater effluent samples of a municipal WWTP of which 34% (81mg/m(3)) and 17% (257mg/m(3)) could be assigned to PE, while PP was not detected in any of the samples. The presented application of TGA-DSC provides a complementary or alternative method to FT-IR analyses for the determination of PE and PP in environmental samples.


Subject(s)
Environmental Monitoring/methods , Polyethylenes/analysis , Polypropylenes/analysis , Wastewater/analysis , Water Pollutants, Chemical/analysis , Calorimetry, Differential Scanning/methods , Thermogravimetry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...