Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202410681, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041709

ABSTRACT

Flexible acquisition of substrates from nutrient pools is critical for microbes to prevail in competitive environments. To acquire glucose from diverse glycoside and disaccharide substrates, many free-living and symbiotic bacteria have developed, alongside hydrolysis, a non-hydrolytic pathway comprised of four biochemical steps and conferred from a single glycoside utilization gene locus (GUL). Mechanistically, this pathway integrates within the framework of oxidation and reduction at the glucosyl/glucose C3, the eliminative cleavage of the glycosidic bond and the addition of water in two consecutive lyase-catalyzed reactions. Here, based on study of enzymes from the phytopathogen Agrobacterium tumefaciens, we reveal a conserved Mn2+ metallocenter active site in both lyases and identify the structural requirements for specific catalysis to elimination of 3-keto-glucosides and water addition to the resulting 2-hydroxy-3-keto-glycal product, yielding 3-keto-glucose. Extending our search of GUL-encoded putative lyases to the human gut commensal Bacteroides thetaiotaomicron, we discover a Ca2+ metallocenter active site in a putative glycoside hydrolase-like protein and demonstrate its catalytic function in the eliminative cleavage of 3-keto-glucosides of opposite (alpha) anomeric configuration as preferred by the A. tumefaciens enzyme (beta). Findings identify a basic set of GUL-encoded lyases for glucoside metabolism and assign physiological significance to GUL genetic diversity in bacteria.

2.
Chempluschem ; : e202300711, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770954

ABSTRACT

The advancement of technologies for producing chemicals and materials from non-fossil resources is of critical importance. An illustrative example is the dehydrogenation of glucose, to yield gluconic acid, a specialty chemical. In this study, we propose an innovative production route for gluconic acid while generating H2 as a co-product. Our concept involves a dual-function membrane, serving both as a catalyst for glucose dehydrogenation into gluconic acid and as a means to efficiently remove the produced H2 from the reaction mixture. To achieve this two membranes were developed, one catalytically active and one dense aimed at H2 removal. The catalytic membrane showed significant activity, yielding 16 % gluconic acid (t=120 min) with a catalyst selectivity of 93 % and stable performance over five consecutive cycles. Incorporating the H2 separating membrane showed the significance of H2 removal in driving the reaction forward. Its inclusion led to a twofold increase in gluconic acid yield, aligning with Le Chatelier's principles. As a future prospect the two layers can be combined into a dual-layer membrane which opens the way for a new production route to simultaneously produce gluconic acid and H2, using high-throughput reactors such as hollow-fiber systems.

3.
Bioelectrochemistry ; 158: 108724, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38714063

ABSTRACT

Microbial conversion of CO2 to multi-carbon compounds such as acetate and butyrate is a promising valorisation technique. For those reactions, the electrochemical supply of hydrogen to the biocatalyst is a viable approach. Earlier we have shown that trace metals from microbial growth media spontaneously form in situ electro-catalysts for hydrogen evolution. Here, we show biocompatibility with the successful integration of such metal mix-based HER catalyst for immediate start-up of microbial acetogenesis (CO2 to acetate). Also, n-butyrate formation started fast (after twenty days). Hydrogen was always produced in excess, although productivity decreased over the 36 to 50 days, possibly due to metal leaching from the cathode. The HER catalyst boosted microbial productivity in a two-step microbial community bioprocess: acetogenesis by a BRH-c20a strain and acetate elongation to n-butyrate by Clostridium sensu stricto 12 (related) species. These findings provide new routes to integrate electro-catalysts and micro-organisms showing respectively bio and electrochemical compatibility.


Subject(s)
Hydrogen , Hydrogen/chemistry , Hydrogen/metabolism , Catalysis , Metals/chemistry , Acetates/chemistry , Acetates/metabolism , Clostridium/metabolism , Electrodes , Biocompatible Materials/chemistry , Bioelectric Energy Sources/microbiology
4.
Angew Chem Int Ed Engl ; 63(20): e202403474, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38506404

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) pose a rapidly increasing global problem as their widespread use and high stability lead worldwide to water contamination, with significant detrimental health effects.[1] Supramolecular chemistry has been invoked to develop materials geared towards the specific capture of PFAS from water,[2] to reduce the concentration below advisory safety limits (e.g., 70 ng/L for the sum of perfluorooctane sulfonic acid, PFOS and perfluorooctanoic acid, PFOA). Scale-up and use in natural waters with high PFAS concentrations has hitherto posed a problem. Here we report a new type of host-guest interaction between deca-ammonium-functionalized pillar[5]arenes (DAF-P5s) and perfluoroalkyl acids. DAF-P5 complexes show an unprecedented 1 : 10 stoichiometry, as confirmed by isothermal calorimetry and X-ray crystallographic studies, and high binding constants (up to 106 M-1) to various polyfluoroalkyl acids. In addition, non-fluorinated acids do not hamper this process significantly. Immobilization of DAF-P5s allows a simple single-time filtration of PFAS-contaminated water to reduce the PFOS/PFOA concentration 106 times to 15-50 ng/L level. The effective and fast (<5 min) orthogonal binding to organic molecules without involvement of fluorinated supramolecular hosts, high breakthrough capacity (90 mg/g), and robust performance (>10 regeneration cycles without decrease in performance) set a new benchmark in PFAS-absorbing materials.

5.
Colloids Surf B Biointerfaces ; 236: 113819, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428208

ABSTRACT

Organisms have evolved intracellular micron-sized lipid droplets to carry and protect lipids and hydrophobic minor compounds in the hydrophilic environment of cells. These droplets can be utilized as carriers of hydrophobic therapeutics by taking advantage of their biological functions. Here, we focus on the potential of plant-derived lipid droplets, known as oleosomes, as carriers for hydrophobic therapeutics, such as curcumin. By spectroscopy and confocal microscopy, we demonstrate that the oleosome membrane is permeable to hydrophobic curcumin molecules. Fluorescence recovery after photobleaching shows rapid curcumin diffusion towards oleosomes, with a diffusion time in the range of seconds. Following this, quenching probes and dilatational rheology reveal that part of the loaded curcumin molecules can accumulate at the oleosome interface, and the rest settle in the inner core. Our findings shed light on the loading mechanism of the plant-derived lipid droplets and underscore the significance of molecular localization for understanding the mechanism. This work not only enhances the understanding of the loading process but also shows potential for oleosomes use as lipid carriers.


Subject(s)
Curcumin , Lipid Droplets , Fluorescence
6.
Food Funct ; 15(1): 223-235, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38054370

ABSTRACT

Starch is an important energy source for humans. Starch escaping digestion in the small intestine will transit to the colon to be fermented by gut microbes. Many gut microbes express α-amylases that can degrade soluble starch, but only a few are able to degrade intrinsic resistant starch (RS), which is insoluble and highly resistant to digestion (≥80% RS). We studied the in vitro fermentability of eight retrograded starches (RS-3 preparations) differing in rapidly digestible starch content (≥70%, 35-50%, ≤15%) by a pooled adult faecal inoculum and found that fermentability depends on the digestible starch fraction. Digestible starch was readily fermented yielding acetate and lactate, whereas resistant starch was fermented much slower generating acetate and butyrate. Primarily Bifidobacterium increased in relative abundance upon digestible starch fermentation, whereas resistant starch fermentation also increased relative abundance of Ruminococcus and Lachnospiraceae. The presence of small fractions of total digestible starch (±25%) within RS-3 preparations influenced the fermentation rate and microbiota composition, after which the resistant starch fraction was hardly fermented. By short-chain fatty acid quantification, we observed that six individual faecal inocula obtained from infants and adults were able to ferment digestible starch, whereas only one adult faecal inoculum was fermenting intrinsic RS-3. This suggests that, in contrast to digestible starch, intrinsic RS-3 is only fermentable when specific microbes are present. Our data illustrates that awareness is required for the presence of digestible starch during in vitro fermentation of resistant starch, since such digestible fraction might influence and overrule the evalution of the prebiotic potential of resistant starches.


Subject(s)
Resistant Starch , Starch , Infant , Adult , Humans , Resistant Starch/metabolism , Fermentation , Starch/metabolism , Feces/microbiology , Acetates , Digestion
7.
Nat Commun ; 14(1): 7123, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932298

ABSTRACT

Biological degradation of natural product glycosides involves, alongside hydrolysis, ß-elimination for glycosidic bond cleavage. Here, we discover an O-glycoside ß-eliminase (OGE) from Agrobacterium tumefaciens that converts the C3-oxidized O-ß-D-glucoside of phloretin (a plant-derived flavonoid) into the aglycone and the 2-hydroxy-3-keto-glycal elimination product. While unrelated in sequence, OGE is structurally homologous to, and shows effectively the same Mn2+ active site as, the C-glycoside deglycosylating enzyme (CGE) from a human intestinal bacterium implicated in ß-elimination of 3-keto C-ß-D-glucosides. We show that CGE catalyzes ß-elimination of 3-keto O- and C-ß-D-glucosides while OGE is specific for the O-glycoside substrate. Substrate comparisons and mutagenesis for CGE uncover positioning of aglycone for protonic assistance by the enzyme as critically important for C-glycoside cleavage. Collectively, our study suggests convergent evolution of active site for ß-elimination of 3-keto O-ß-D-glucosides. C-Glycoside cleavage is a specialized feature of this active site which is elicited by substrate through finely tuned enzyme-aglycone interactions.


Subject(s)
Cardiac Glycosides , Glycosides , Humans , Glycosides/chemistry , Flavonoids/metabolism , Glucosides/metabolism , Intestines/microbiology , Substrate Specificity
8.
ACS Catal ; 13(20): 13446-13455, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37881787

ABSTRACT

Viable alternatives to scarce and expensive noble-metal-based catalysts are transition-metal carbides such as Mo and W carbides. It has been shown that these are active and selective catalysts in the hydrodeoxygenation of renewable lipid-based feedstocks. However, the reaction mechanism and the structure-activity relationship of these transition-metal carbides have not yet been fully clarified. In this work, the reaction mechanism of butyric acid hydrodeoxygenation (HDO) over molybdenum carbide (Mo2C) has been studied comprehensively by means of density functional theory coupled with microkinetic modeling. We identified the rate-determining step to be butanol dissociation: C4H9*OH + * → C4H9* + *OH. Then we further explored the possibility to facilitate this step upon heteroatom doping and found that Zr- and Nb-doped Mo2C are the most promising catalysts with enhanced HDO catalytic activity. Linear-scaling relationships were established between the electronic and geometrical descriptors of the dopants and the catalytic performance of various doped Mo2C catalysts. It was demonstrated that descriptors such as dopants' d-band filling and atomic radius play key roles in governing the catalytic activity. This fundamental understanding delivers practical strategies for the rational design of Mo2C-based transition-metal carbide catalysts with improved HDO performance.

9.
Soft Matter ; 19(33): 6355-6367, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37577849

ABSTRACT

It has been reported that lipid droplets (LDs), called oleosomes, have an inherent ability to inflate or shrink when absorbing or fueling lipids in the cells, showing that their phospholipid/protein membrane is dilatable. This property is not that common for membranes stabilizing oil droplets and when well understood, it could be exploited for the design of responsive and metastable droplets. To investigate the nature of the dilatable properties of the oleosomes, we extracted them from rapeseeds to obtain an oil-in-water emulsion. Initially, we added an excess of rapeseed oil in the dispersion and applied high-pressure homogenization, resulting in a stable oil-in-water emulsion, showing the ability of the molecules on the oleosome membrane to rearrange and reach a new equilibrium when more surface was available. To confirm the rearrangement of the phospholipids on the droplet surface, we used molecular dynamics simulations and showed that the fatty acids of the phospholipids are solubilized in the oil core and are homogeneously spread on the liquid-like membrane, avoiding clustering with neighbouring phospholipids. The weak lateral interactions on the oleosome membrane were also confirmed experimentally, using interfacial rheology. Finally, to investigate whether the weak lateral interactions on the oleosome membrane can be used to have a triggered change of conformation by an external force, we placed the oleosomes on a solid hydrophobic surface and found that they destabilise, allowing the oil to leak out, probably due to a reorganisation of the membrane phospholipids after their interaction with the hydrophobic surface. The weak lateral interactions on the LD membrane and their triggered destabilisation present a unique property that can be used for a targeted release in foods, pharmaceuticals and cosmetics.


Subject(s)
Lipid Droplets , Phospholipids , Lipid Droplets/chemistry , Emulsions/chemistry , Phospholipids/chemistry , Molecular Conformation , Water/chemistry
10.
Colloids Surf B Biointerfaces ; 229: 113476, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37499547

ABSTRACT

Oleosomes are natural oil droplets, present in all organisms and abundant in oilseeds. After their aqueous extraction from oilseeds, they can be directly utilized as oil droplets in food, cosmetics and all types of oil-in-water emulsion systems. However, to expand the potential uses of oleosomes as green ingredients and to valorize oilseeds as efficient as possible, we explored their emulsifying ability. Oleosomes were extracted from rapeseeds, and 10.0 wt% oil-in-water emulsions were created after homogenization with 0.5-6.0 wt% oleosomes, and the droplet size of the emulsions and their structure was measured by laser diffraction and confocal laser scanning microscopy (CLSM), respectively. The emulsion with an oleosome concentration lower than 1.0 wt% gave unstable emulsions with visible free oil. At oleosome concentrations at 1.5 wt% or higher, we obtained stable emulsions with droplet sizes between 2.0 and 12.0 µm. To investigate the role of the oleosome interfacial molecules in stabilizing emulsions we also studied their emulsifying and interfacial properties (using drop tensiometry) after isolating them from the oleosome structure. Both oleosomes and their isolated interfacial molecules exhibited a similar behavior on the oil-water interfaces, forming predominantly elastic interfacial films, and also showed a similar emulsifying ability. Our results show that oleosomes are not stabilizing the oil-in-water emulsions as intact particles, but they provide their interfacial molecules, which are enough to stabilize an oil-water surface up to about 2 times bigger than the initial oleosome surface. The understanding of the behavior of oleosomes as emulsifiers, opens many possibilities to use oleosomes as alternative to synthetic emulsifiers in food and pharma applications.


Subject(s)
Emulsifying Agents , Lipid Droplets , Emulsions/chemistry , Emulsifying Agents/chemistry , Water/chemistry
11.
Angew Chem Int Ed Engl ; 62(33): e202306701, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37354027

ABSTRACT

Electrocatalytic glucose oxidation can produce high value chemicals, but selectivity needs to be improved. Here we elucidate the role of the Pt oxidation state on the activity and selectivity of electrocatalytic oxidation of glucose with a new analytical approach, using high-pressure liquid chromatography and high-pressure anion exchange chromatography. It was found that the type of oxidation, i.e. dehydrogenation of primary and secondary alcohol groups or oxygen transfer to aldehyde groups, strongly depends on the Pt oxidation state. Pt0 has a 7-fold higher activity for dehydrogenation reactions than for oxidation reactions, while PtOx is equally active for both reactions. Thus, Pt0 promotes glucose dialdehyde formation, while PtOx favors gluconate formation. The successive dehydrogenation of gluconate is achieved selectively at the primary alcohol group by Pt0 , while PtOx also promotes the dehydrogenation of secondary alcohol groups, resulting in more complex reaction mixtures.

12.
Ultrason Sonochem ; 93: 106297, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36641870

ABSTRACT

Chicken feather (CF) has been deemed as one of the main poultry byproducts with a large amount produced globally. However, the robust chemical nature of chicken feathers has been limiting in its wide-scale utilization and valorization. The study proposed a strategy of keratin regeneration from chicken feather combining ultrasound and Cysteine (Cys)-reduction for keratin regeneration. First, the ultrasonic effect on feather degradation and keratin properties was systematically explored based on Cys-reduction. Results showed that the feather dissolution was significantly improved by increasing both ultrasonic time and power, and the former had a greater impact on keratin yield. However, the treatment time over 4 h led to a decrease of keratin yield, producing more soluble peptides, > 9.7 % of which were < 0.5 kDa. Meanwhile, prolonging time decreased the thermal stability with weight loss at a lower temperature and amino acids content (e.g., Ser, Pro and Gly) of keratin. Conversely, no remarkable damage in chemical structure and thermal stability of regenerated keratin was observed by only increasing ultrasonic power, while the keratin solubility was notably promoted and reached 745.72 mg·g-1 in NaOH (0.1 M) solution (400 W, 4 h). The regenerated keratin under optimal conditions (130 W, 2.7 h, and 15 % of Cys) possessed better solubility while without obvious damage in chemical structure, thermal stability, and amino acids composition. The study illustrated that ultrasound physically improved CF degradation and keratin solubility without nature damage and provided an alternative for keratin regeneration involving no toxic reagent, probably holding promise in the utilization and valorization of feather waste.


Subject(s)
Feathers , Keratins , Animals , Feathers/chemistry , Keratins/chemistry , Chickens , Peptides , Amino Acids/analysis
13.
Anal Chem ; 95(5): 2680-2689, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36715453

ABSTRACT

We developed a technique based on the use of microsensors to measure pH and H2 gradients during microbial electrosynthesis. The use of 3D electrodes in (bio)electrochemical systems likely results in the occurrence of gradients from the bulk conditions into the electrode. Since these gradients, e.g., with respect to pH and reactant/product concentrations determine the performance of the electrode, it is essential to be able to accurately measure them. Apart from these parameters, also local oxidation-reduction potential and electric field potential were determined in the electrolyte and throughout the 3D porous electrodes. Key was the realization that the presence of an electric field disturbed the measurements obtained by the potentiometric type of microsensor. To overcome the interference on the pH measure, a method was validated where the signal was corrected for the local electric field measured with the electric potential microsensor. The developed method provides a useful tool for studies about electrode design, reactor engineering, measuring gradients in electroactive biofilms, and flow dynamics in and around 3D porous electrodes of (bio)electrochemical systems.

14.
J Colloid Interface Sci ; 631(Pt A): 181-190, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36371825

ABSTRACT

Microparticles can function as carriers of e.g. pharmaceuticals and food ingredients. Hollow microparticles can enhance the capacitance due to their large interior void. For preparing microparticles, polymers have been assembled into spherical structures through the use of porous CaCO3 templates, followed by polymer cross-linking and selective template removal. However, this often results in the formation of microparticles with a solid core. Here we use proteins with different aggregate size distributions (<10 nm or >100 nm) to either form solid or hollow microparticles. Proteins were mixed with CaCl2 and Na2CO3 solutions, which from CaCO3 microcrystals (with 20-60 nm pores) with encapsulated proteins. Here it will be shown that small protein aggregates uniformly distributed into the CaCO3 templates. However, larger protein aggregates accumulated at the template edges. Au3+ ions were then added, which oxidize and cross-link proteins and are reduced to form gold nanoparticles (AuNPs). After removal of the templates, the small proteins formed solid microparticles and the larger protein aggregates hollow microparticles. This method of fabrication of solid and hollow protein microparticles, with embedded AuNPs, could be used for generating biomaterials with a broader range of applications, such as hosting molecules and multimodal imaging due to the presence of the AuNPs.


Subject(s)
Metal Nanoparticles , Protein Aggregates , Gold , Proteins/chemistry , Porosity , Polymers/chemistry
15.
ACS Omega ; 7(44): 39924-39930, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36385893

ABSTRACT

Chicken feathers are major byproducts of the livestock processing industry with high potential in the feed sector. In this study, we present a new approach using Fourier transform infrared (FTIR) spectroscopy to detect the structural changes of feather keratin and its availability for enzymatic hydrolysis (AEH) induced by the thermal pressure hydrolysis (TPH) process. Compared to time-consuming in vitro measurement techniques, the proposed method provides rapid information about the structural changes during TPH which enables quick adaptation of TPH conditions as the quality of the incoming feather changes. By analyzing the FTIR spectra of raw and processed feathers, it was found that AEH negatively relates to the ß-sheet content (represented by two IR peaks centered at 1635 and 1689 cm-1), while it positively relates to a new series of peaks centered around 1700 cm-1 appearing after the TPH process. The proposed FTIR technique provides a reliable and rapid approach to determine the digestibility indicated by AEH of the processed feather and may be used in process control and optimization.

16.
Chem Commun (Camb) ; 58(98): 13608-13611, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36404738

ABSTRACT

The potential of carbon supported Mo and W carbides to replace Pt is shown for the hydrogenation of cinnamaldehyde. Although the carbide catalysts are 4-6 times less active, both the carbides and Pt are selective towards CC hydrogenation. Unlike Pt, the carbides additionally form ß-methylstyrene.

17.
Bioresour Technol ; 363: 127994, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36262002

ABSTRACT

This work simulates the production of methyl crotonate from various industrial wastewaters. In the upstream process, wastewater is fermented into volatile fatty acids which are then converted into polyhydroxyalkanoates (PHA) by means of mixed microbial cultures. In the downstream, PHA undergoes a series of thermolysis and esterification reactions to produce methyl crotonate. The origin of the wastewater was found to have a great influence on the composition of the PHA with the effluent of a candy bar factory producing a high polyhydroxybutyrate/polyhydroxyvalerate ratio of 86/14 in favour of methyl crotonate production. It was observed that the use of intracellular polyhydroxybutyrate, instead of purified, significantly lowers the number of separation steps and yet reduces the methyl crotonate recovery by only 20 %. An operating pressure higher than 18 bar led to more transesterification of polyhydroxybutyrate, producing byproducts instead of methyl crotonate. Finally, a 3 h reaction was found sufficient for completion of polyhydroxybutyrate conversion.


Subject(s)
Polyhydroxyalkanoates , Wastewater , Crotonates , Fatty Acids, Volatile , Bioreactors
18.
Ind Eng Chem Res ; 61(38): 14211-14221, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36193442

ABSTRACT

Solid sorbents are essential for developing technologies that directly capture CO2 from air. In solid sorbents, metal oxides and/or alkali metal carbonates such as potassium carbonate (K2CO3) are promising active components owing to their high thermal stability, low cost, and ability to chemisorb the CO2 present at low concentrations in air. However, this chemisorption process is likely limited by internal diffusion of CO2 into the bulk of K2CO3. Therefore, the size of the K2CO3 particles is expected to be an important factor in determining the kinetics of the sorption process during CO2 capture. To date, the effects of particle size on supported K2CO3 sorbents are unknown mainly because particle sizes cannot be unambiguously determined. Here, we show that by using a series of techniques, the size of supported K2CO3 particles can be established. We prepared size-tuned carbon-supported K2CO3 particles by tuning the K2CO3 loading. We further used melting point depression of K2CO3 particles to collectively estimate the average K2CO3 particle sizes. Using these obtained average particle sizes, we show that the particle size critically affects the efficiency of the sorbent in CO2 capture from air and directly affects the kinetics of CO2 sorption as well as the energy input needed for the desorption step. By evaluating the mechanisms involved in the diffusion of CO2 and H2O into K2CO3 particles, we relate the microscopic characteristics of sorbents to their macroscopic performance, which is of interest for industrial-scale CO2 capture from air.

19.
Angew Chem Int Ed Engl ; 61(38): e202207677, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-35801835

ABSTRACT

Photoreduction of CO2 into solar fuels has received great interest, but suffers from low catalytic efficiency and poor selectivity. Herein, two single-Cu-atom catalysts with unique Cu configurations in phosphorus-doped carbon nitride (PCN), namely, Cu1 N3 @PCN and Cu1 P3 @PCN were fabricated via selective phosphidation, and tested in visible light-driven CO2 reduction by H2 O without sacrificial agents. Cu1 N3 @PCN was exclusively active for CO production with a rate of 49.8 µmolCO gcat -1 h-1 , outperforming most polymeric carbon nitride (C3 N4 ) based catalysts, while Cu1 P3 @PCN preferably yielded H2 . Experimental and theoretical analysis suggested that doping P in C3 N4 by replacing a corner C atom upshifted the d-band center of Cu in Cu1 N3 @PCN close to the Fermi level, which boosted the adsorption and activation of CO2 on Cu1 N3 , making Cu1 N3 @PCN efficiently convert CO2 to CO. In contrast, Cu1 P3 @PCN with a much lower Cu 3d electron energy exhibited negligible CO2 adsorption, thereby preferring H2 formation via photocatalytic H2 O splitting.

20.
J Mater Chem B ; 10(33): 6287-6295, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35699114

ABSTRACT

Hollow microparticles (MPs) are of great relevance in the materials industry for a wide range of applications, such as catalysis, coatings, and delivery of theranostics. Here, we report the formation of hollow MPs through the assembly of lipoproteins in CaCO3 templates. Proteins interact in the pores of CaCO3 templates through attractive hydrophobic forces and form dense edges of hollow MPs. To further cross-link the proteins, Au3+ was added to initiate a redox reaction, where proteins were oxidized forming inter- and intramolecular covalent bonds, while Au3+ was reduced and gold nanoparticles (AuNPs) were formed. The obtained protein-based hollow MPs have a diameter of 6 µm and the AuNPs are embedded on their surface. Through this research, we suggest a new route to design biobased Au-protein hollow MPs in simple steps, which can allow new possibilities for carrying functional molecules and bioimaging.


Subject(s)
Gold , Metal Nanoparticles , Proteins/chemistry , Catalysis , Gold/chemistry , Hydrophobic and Hydrophilic Interactions , Metal Nanoparticles/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...